. Energy News .

How does your garden grow?
by Staff Writers
Cambridge, UK (SPX) Aug 23, 2013

Corn grown in coal waste is shown above corn grown in coal waste with added biofertiliser. Credit: Peter Leggo.

Food and biofuel crops could be grown and maintained in many places where it wasn't previously possible, such as deserts, landfills and former mining sites, thanks to an inexpensive, non-chemical soil additive.

The additive, a simple mixture of organic waste, such as chicken manure, and zeolite, a porous volcanic rock, could be used to support agriculture in both the developed and developing world, while avoiding the serious environmental consequences associated with the overuse of chemical fertilisers. The mixture permits a controlled release of nutrients, the regulation of water, and an ideal environment for growing crops.

Researchers from the University of Cambridge have demonstrated that with the addition of the biofertiliser, biofuel crops can be successfully grown and - more importantly, sustained - even on coal waste highly contaminated with metal residues.

Using coal waste from the site of a former colliery in Nottinghamshire as a substrate, the researchers grew rapeseed, flax, sugar beet and maize, with different additives: manure, zeolite, lime, or biofertiliser, as well as coal waste alone and regular garden soil.

Plants grown in the coal waste with added biofertiliser achieved nearly twice the weight and yield of those grown in garden soil or in coal waste with added manure, and more than twice the weight and yield of those grown in coal waste with added zeolite. The results are published in the August issue of the International Journal of Environment and Resource.

The coal waste contains chemical elements that can be ionised by the biofertiliser, making nutrients which are essential to growth available for uptake by the plants. As the organic waste in the mixture decomposes, it produces ammonium ions which build up on the surface of the zeolite.

When the mixture is added to soil, it boosts the population of micro-organisms responsible for nitrification, which is essential for plant nutrition. The biofertiliser also helps plants develop dense root systems which stabilise the soil against erosion.

In addition to the coal waste, the team is working with marginal soils, such as those in desert climates, which normally require large amounts of water and chemical fertilisers in order for plants to grow. Control experiments have shown that water held in the zeolite increases the moisture content of soil in desert conditions. After initial watering, early-morning dew is held in the pores of the zeolite and released during the hottest part of the day. Plants grown with the biofertiliser achieve greater weight, and in the case of fruits and vegetables, a better taste, than those grown with chemical fertilisers.

Nitrogen is critical for crop development, yet is deficient in many types of soil. Over the past century, chemical fertilisers have been used to boost nitrogen levels and crop yields, helping global food supply keep pace with population growth. However, this has come at a cost as they are detrimental to long-term soil health.

Without a regular input of organic matter, soil microbial diversity decreases and the carbon concentration is lowered. The overuse of chemical fertilisers causes the soil to lose both its ability to hold water and its overall structure, leading to greater runoff and groundwater pollution. Nitrogen-rich fertiliser runoff is the primary cause of oxygen depletion in oceans, lakes and rivers, leading to aquatic 'dead zones.'

"This is a whole new approach to plant nutrition," says Dr Peter Leggo of the Department of Earth Sciences, who developed the material. "Previously, you'd douse crops with chemicals, and it's caused a huge reduction in soil microbial diversity. It has reached the stage that in certain parts of North America enormous dust bowls have developed as a consequence. The material we've developed takes less energy to produce, improves soil structure and enables you to grow crops on almost any type of soil."

The team has plans to commercialise the material where there are large deposits of zeolite, and export it to other markets. There are also plans to collaborate with charities and social enterprises to create sustainable farmland for small hold farmers in the developing world.


Related Links
University of Cambridge
Farming Today - Suppliers and Technology

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear


Ancient cycads found to be pre-adapted to grow in groves
Washington DC (SPX) Aug 22, 2013
The ancient cycad lineage has been around since before the age of the dinosaurs. More recently, cycads also co-existed with large herbivorous mammals, such as the ice age megafauna that only went extinct a few tens of thousands of years ago. Cycads that are living today have large, heavy seeds with a fleshy outer coating that suggests they rely on large bodied fruit-eating animals to disperse th ... read more

Map carved onto surface of ostrich egg may be oldest showing New World

Thai villagers mistake Google worker for government snoop

Norway says no to Apple request to photograph Oslo for 3-D maps

Africa's ups and downs

Satellite tracking of zebra migrations in Africa is conservation aid

'Spoofing' attack test takes over ship's GPS navigation at sea

Orbcomm Globaltrak Completes Shipment Of Fuel Monitoring Solution In Afghanistan

Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

To protect Amazon, Colombia enlarges nature reserve

Brazil Amazon town takes a stand against deforestation

Rising deforestation sparks concern in Brazil Amazon

One tree's architecture reveals secrets of a forest

New possibilities for efficient biofuel production

Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Chicago Area EV Charging Station Equipped with Solar Canopy and Lithium-ion Battery

Solar Industry Capital Expenditures Set to Rebound as Emerging Economies Boost Production

Second round of solar auction to light up Australia's capital

Sunplanter Gives Radiant House a Beautiful Advantage at Solar Decathlon

China to Remain Wind Power Market Leader in 2020

Localized wind power blowing more near homes, farms and factories

Price of Wind Energy in the United States Is Near an All-Time Low

GDF Suez sells half-share of Portuguese renewable, thermal holdings

Australia's coal sector enduring toughest operating environment

Greenpeace warns water pollution from German coal mining on the rise

Greenpeace says Chinese coal company exploiting water

Major China coal plant drains lake, wells: Greenpeace

China's Bo show likely condoned by officials: analysts

Defiant Bo denies bribery charge as China trial opens

UW geographer devises a way for China to resolve its 'immigration' dilemma

Bo Xilai: rise and fall of a political star in China

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement