Subscribe free to our newsletters via your
  Energy News  




Subscribe free to our newsletters via your




















FARM NEWS
How improved valves let grasses 'breathe,' cope with climate change
by Staff Writers
Palo Alto, CA (SPX) Mar 17, 2017


File image.

New work from a joint team of plant biologists and ecologists from Carnegie and Stanford University has uncovered the factor behind an important innovation that makes grasses - both the kind that make up native prairies and the kind we've domesticated for crops - among the most-common and widespread plants on the planet. Their findings may enable the production of plants that perform better in warmer and dryer climate conditions, and are published by Science.

All land plants take in carbon dioxide (CO2) from the atmosphere and "exhale" oxygen and water vapor. This exchange is required for plant growth; the carbon dioxide is made into sugars by photosynthesis, the process by which plants turn the sun's energy into food. But it also is a major driver of global climate cycles.

A plant needs to balance its ability to take in CO2 with the potential to lose water. To achieve this balance it uses tiny, cellular valve-like pores on the surfaces of its leaves called stomata (after the Greek word for mouths). In grasses, these valves are particularly well-tuned; they can open wide to maximize CO2 uptake and shut down quickly when the surrounding conditions would lead to increased water loss.

Because grass crops like corn, wheat, and rice are a major food source, the Carnegie-Stanford group wanted to know why the stomata in these particular plants work so much better than stomata in other plants. One obvious feature is that in most plants, stomata are made up of just two so-called "guard cells", but grasses have an additional pair of cells on either side, which are called "subsidiary cells." These subsidiary cells enable the guard cells to open and close especially quickly.

In addition, while the guard cells of many plants have a kidney shape, grass guard cells are an unusual "dumbbell" shape. The subsidiary cells alongside these dumbbell-resembling cells provide a mechanical boost to enable them to open wide.

In this study, led by Dominique Bergmann, an honorary adjunct staff member at Carnegie's Department of Plant Biology and Professor at Stanford University's Biology Department, the researchers used a relative of wheat called Brachypodium to demonstrate that all grass stomata with a four-cell configuration, including the two subsidiary cells, are indeed more responsive to changing environmental conditions, and have a wider range of apertures for pore opening and closing. This sensitivity likely enhances the plant's performance, particularly in high temperatures or drought conditions.

Furthermore, the team - including lead author Michael Raissig of Stanford and Carnegie Global Ecology's Acting Director Joseph Berry - used sophisticated research techniques to identify a specific gene that enables Brachypodium to form the lateral subsidiary cells.

The gene, called BdMUTE, encodes a protein that is considered a "master regulator" of cell behavior by turning on and off other genes that give cells their unique properties. Without this master regulator, Brachypodium stomata resemble the more primitive two-celled stomata found in other plants, and the research team showed that grasses with these two-celled stomata perform poorly.

What was particularly interesting and surprising is that BdMUTE isn't a brand-new protein found only in the grasses. Rather, it is a slightly modified version of protein that, a decade ago, was shown to have a different role in making two-celled stomata in the broadleaf mustard plant Arabidopsis.

When an Arabidopsis cell is exposed to this version of the MUTE protein, it gets the message that it should commit itself to making guard cells. In Brachypodium, however, the protein moves out of the guard cell precursors into the neighbor cells and then induces these neighbors to become subsidiary cells in the four-celled complex.

"Could the mobility of the grass version of MUTE be the key to this master regulator's ability to set up these physiologically improved, four-celled grass stomata?" Raissig asked.

"And could this finding be utilized to make crops more resistant to warm climates and water-scarce conditions?" added Bergmann. "This presents an interesting target for further research that aims at engineering stomatal form and function to help crops cope in a changing climate, and ultimately, provide food for our ever-growing population."

"This elegant work from Dominique and colleagues is a beautiful illustration of how plants evolved developmental solutions to tackle physiological problems." said Sue Rhee, Director of Carnegie's Plant Biology.

FARM NEWS
Increasing plant yield in wake of looming phosphate supply limits
Chapel Hill NC (SPX) Mar 17, 2017
Scientists at the University of North Carolina at Chapel Hill have pinpointed a key genetic switch that helps soil bacteria living on and inside a plant's roots harvest a vital nutrient with limited global supply. The nutrient, phosphate, makes it to the plant's roots, helping the plant increase its yield. The work, published in Nature, raises the possibility of probiotic, microbe treatmen ... read more

Related Links
Carnegie Institution for Science
Farming Today - Suppliers and Technology

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
Beautiful science with astronaut aurora

SAGE III Achieves First Light from Space Station Perch

NASA Satellite Identifies Global Ammonia 'Hotspots'

Changing temperatures and precipitation may affect living skin of drylands

FARM NEWS
Technology can reduce GPS outages from Northern Lights, researchers say

DevOps process reduces GPS OCX development time for Raytheon

Police in China's restive Xinjiang to track cars by GPS

GLONASS station in India to expedite 'space centric' warfare command

FARM NEWS
Late US billionaire's record land gift lays Chile row to rest

Did humans create the Sahara desert?

Louisiana wetlands hurting from accelerated sea level rise

Huge swathe of Australian mangroves 'die of thirst'

FARM NEWS
Study IDs link between sugar signaling and regulation of oil production in plants

NASA Study Confirms Biofuels Reduce Jet Engine Pollution

Scientists harness solar power to produce clean hydrogen from biomass

Petrol and jet fuel alternatives are produced by yeast cell factories

FARM NEWS
Dubai harvests desert sun at vast solar plant

New solar energy plant to be installed on Barbuda

Sea change needed for low-carbon economy

Nanotube film may resolve longevity problem of challenger solar cells

FARM NEWS
North Carolina ready for offshore wind energy auction

North Carolina offshore wind hailed as job creator

Flagship English Channel wind farm nears completion

French, Spanish companies set for more wind power off coast of France

FARM NEWS
World Bank indirectly backs harmful SE Asian projects: report

Adani to begin work on Australia mine by August: report

Czech energy group bucks green trend with bet on coal

17 killed in China coal mine accident: state media

FARM NEWS
Art for art's sake: Calls for Hong Kong to get more creative

Chinese police 'admit torture' of dead suspect

Warhol Mao portrait goes under the hammer in Hong Kong

Hong Kong protesters jailed for 3 years for anti-China clashes




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement