. Energy News .

Plant genomes may help next generation respond to climate change
by Staff Writers
Providence RI (SPX) Oct 12, 2011

Laura J. Martin, a Brown graduate now a Ph.D candidate at Cornell, takes a census of surviving Arabidopsis plants at the field site in Norwich, England. Harvested plants were shipped to Brown for analysis. Credit: Judith Roe.

In the face of climate change, animals have an advantage over plants: They can move. But a new study led by Brown University researchers shows that plants may have some tricks of their own.

In a paper published in Science, the research team identifies the genetic signature in the common European plant Arabidopsis thaliana that governs the plant's fitness - its ability to survive and reproduce - in different climates. The researchers further find that climate in large measure influences the suite of genes passed on to Arabidopsis to optimize its survival and reproduction.

The set of genes determining fitness varies, the team reports, depending on the climate conditions in the plant's region - cold, warm, dry, wet, or otherwise.

"This is the first study to show evolutionary adaptation for Arabidopsis thaliana on a broad geographical scale and to link it to molecular underpinnings," said Johanna Schmitt, director of the Environmental Change Initiative at Brown and an author on the paper. "Climate is the selective agent."

The researchers believe that by identifying the genetic signatures that mark Arabidopsis' response to changing climate, scientists may understand how climate may cause the re-engineering of the genetic profiles of other plants.

"There is still evolutionary flexibility to help plants take one direction or another," said Alexandre Fournier-Level, a postdoctoral researcher at Brown and the paper's first author. "It gives us good hope to see, yes, it's adapting."

The researchers planted Arabidopsis, a small flowering plant popular with plant biologists because its genome is relatively small, at four locations across its native range in Europe - Valencia, Spain; Halle, Germany; Norwich, United Kingdom; and Oulu, Finland.

At each field site, genetic strains were planted, originating from across the species' native climate range - from cold (Finland) to warm (Spain), with oceanic (United Kingdom) and continental (Germany) variables mixed in.

That way, the researchers could compare local strains with representatives from the other regions and search for signs of "home court advantage," Schmitt said.

"This was a truly massive undertaking, tracking more than 75,000 plants in the field, from near the arctic circle to the Mediterranean coast," said Amity Wilczek, a former postdoctoral researcher in Schmitt's lab now on the faculty at Deep Springs College.

"Arabidopsis is an annual plant, so we could measure total lifetime success of an individual within a single year. We gathered plants from a variety of native climates and grew some of each in our four widely distributed European garden sites.

"We shipped our harvested plants back to Brown and began the laborious task of counting fruits on these plants. In the end, we were able to assemble a very large and comprehensive dataset that gives us new insight into what it takes for a plant to be succesful in nature under a broad range of climate conditions."

The team then burrowed into the Arabidopsis genome to find the molecular mechanisms that might give the plant genetic flexibility to roll with climate punches.

To identify variations in the genome among the regional representatives, the researchers carried out a genome-wide association study for survival and fruiting comprising more than 213,000 single-nucleotide polymorphisms.

These SNPs, Fournier-Level explained, are like signposts pointing to areas in the genome where survival and reproduction may be emphasized and areas that show variations in the regional representatives' genetic makeup.

From the experiments, the team discovered that the SNPs that determined fitness for Arabidopsis in one region are surprisingly different from those associated with the plant's fitness in another region.

The team also learned from the experiments that SNP variants - "alleles" - associated with high fitness within each field site were locally abundant in that region, demonstrating a kind of home court advantage at the genomic level.

In addition, certain climate variables seemed to control the geographic distribution of fitness-associated SNPs. For example, fitness SNPs in Finland, at the northern range limit, were limited by temperature. In one example presented in the paper, the researchers identify a SNP allele in a water-stress tolerance gene, called SAG21.

This allele was common in Arabidopsis's Spanish populations, but not in the cool climate of Finland where tests showed plants carrying that allele fared poorly.

"Climate explains the distribution of locally favorable alleles," Fournier-Level explained. "This helps explain how climate shapes distribution."

"We found that the genetic basis of survival and reproduction is almost entirely different in different regions, which suggests that evolutionary adaptation to one climate may not always result in a tradeoff of poor performance in another climate," said Schmitt, the Stephen T. Olney Professor of Natural History and professor of biology and environmental studies.

"Thus, the Arabidopsis genome may contain evolutionary flexibility to respond to climate change."

Martha Cooper, lab manager in Schmitt's lab, and Magnus Nordborg and Arthur Korte from the Gregor Mendel Institute in Austria contributed to the paper.

The National Science Foundation and the Alexander von Humboldt Foundation funded the work.

Another study of genetic adaptations to climate
In another study published in the same issue of Science, a team led by Joy Bergelson, professor and chair of Ecology and Evolution at the University of Chicago, identified genetic loci associated with adaptations to climate change in A. thaliana.

Genes involved in processes such as photosynthesis and energy metabolism were more common among genes associated with climate adaptation, the researchers discovered.

Many of these gene loci also showed evidence of evolving through selective sweeps, where a new mutation appears and spreads through a population - a strategy that may not be effective during rapid changes in climate.

"The contribution of selective sweeps suggests that there will be limits on the rate at which this plant can adapt to climate change," Bergelson said. (Bergelson is a 1984 Brown graduate with an Sc.B. in biology.)

Related Links
Brown University
Farming Today - Suppliers and Technology

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Rethinking connection between soil as a carbon reservoir and global warming
Zurich, Switzerland (SPX) Oct 11, 2011
Soils store three times as much carbon as plants and the atmosphere. Soil organic matter such as humus plays a key role in the global carbon cycle as it stores huge amounts of carbon and thus counters global warming. Consequently, the Kyoto Protocol permits the signatory countries to count soils and forests against greenhouse gas emissions as so-called carbon sinks. Exactly why some ... read more

Astrium signs new Pleiades contract

New program to expand, enhance use of LIDAR sensing technology

Indra Tries In Madrid And Seville Space Technology To Detect Heat Islands

RADA Selected for a SAR Development Program

Electronic Compass Market Finds its Way to 73 Percent Growth in 2011

Raytheon Joins Industry Partners in Honoring USAF for Historic Contributions Through GPS

Russia's Soyuz-2.1B carrier rocket orbits Glonass satellite

Ruling Fuels Debate On Warrantless Cell Phone Tracking

New study shows how trees clean the air in London

Demonstrators in Bolivia resume march

International bodies to probe crackdown on Bolivia protest

Forest structure, services and biodiversity may be lost even as form remains

Certain biofuel mandates unlikely to be met by 2022

US unlikely to hit Renewable Fuel Standard for cellulosic biofuels

Advancing next gen biofuels by turning up the heat on biomass pretreatment processes

From compost to sustainable fuels as heat loving fungi sequenced

SolarBridge Technologies Wins US DoE ARPA-E Grant

Critical Minerals Ignite Geopolitical Storm

SOLON and PG and E 15-MW Five Points Solar PV Station Goes Live

Renewvia Energy and PSE and G Cut Ribbon on Milestone Solar Project

Euro Bank: Wind policy 'direction' needed

Natural Power US to act as Owner's Engineer on 2.1GW Wyoming wind farm

Natural Power deploys first dual-mode ZephIR wind lidar in India

New energy in search for future wind

Sundance says 'no reason' to doubt Hanlong deal

Mountaintop coal mining moves a step ahead

13 killed in China mine explosion

Concern as China firm to buy Australian coal mine

Hong Kong chief vows to tackle housing woes

Tibetan monastery a 'virtual prison': exiled monk

One year after contested Nobel, Norway reaches out to China

China province cools hopes of 'one-child' policy easing


The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement