. Energy News .

Spinach power gets a big boost
by Staff Writers
Nashville TN (SPX) Sep 06, 2012

This is a biohybrid solar cell that uses the photosynthetic protein from spinach made by Vanderbilt students based on a previous design. Credit: Amrutur Anilkumar, Vanderbilt University.

An interdisciplinary team of researchers at Vanderbilt University have developed a way to combine the photosynthetic protein that converts light into electrochemical energy in spinach with silicon, the material used in solar cells, in a fashion that produces substantially more electrical current than has been reported by previous "biohybrid" solar cells.

The research was reported online in the journal Advanced Materials and Vanderbilt has applied for a patent on the combination.

"This combination produces current levels almost 1,000 times higher than we were able to achieve by depositing the protein on various types of metals. It also produces a modest increase in voltage," said David Cliffel, associate professor of chemistry, who collaborated on the project with Kane Jennings, professor of chemical and biomolecular engineering.

"If we can continue on our current trajectory of increasing voltage and current levels, we could reach the range of mature solar conversion technologies in three years."

The researchers' next step is to build a functioning PS1-silicon solar cell using this new design. Jennings has an Environmental Protection Agency award that will allow a group of undergraduate engineering students to build the prototype. The students won the award at the National Sustainable Design Expo in April based on a solar panel that they had created using a two-year old design.

With the new design, Jennings estimates that a two-foot panel could put out at least 100 milliamps at one volt - enough to power a number of different types of small electrical devices.

More than 40 years ago, scientists discovered that one of the proteins involved in photosynthesis, called Photosystem 1 (PS1), continued to function when it was extracted from plants like spinach.

Then they determined PS1 converts sunlight into electrical energy with nearly 100 percent efficiency, compared to conversion efficiencies of less than 40 percent achieved by manmade devices. This prompted various research groups around the world to begin trying to use PS1 to create more efficient solar cells.

Another potential advantage of these biohybrid cells is that they can be made from cheap and readily available materials, unlike many microelectronic devices that require rare and expensive materials like platinum or indium. Most plants use the same photosynthetic proteins as spinach. In fact, in another research project Jennings is working on a method for extracting PS1 from kudzu.

Since the initial discovery, progress has been slow but steady. Researchers have developed ways to extract PS1 efficiently from leaves. They have demonstrated that it can be made into cells that produce electrical current when exposed to sunlight. However, the amount of power that these biohybrid cells can produce per square inch has been substantially below that of commercial photovoltaic cells.

Another problem has been longevity. The performance of some early test cells deteriorated after only a few weeks. In 2010, however, the Vanderbilt team kept a PS1 cell working for nine months with no deterioration in performance. "Nature knows how to do this extremely well. In evergreen trees, for example, PS1 lasts for years," said Cliffel. "We just have to figure out how to do it ourselves."

The Vanderbilt researchers report that their PS1/silicon combination produces nearly a milliamp (850 microamps) of current per square centimeter at 0.3 volts. That is nearly two and a half times more current than the best level reported previously from a biohybrid cell.

The reason this combo works so well is because the electrical properties of the silicon substrate have been tailored to fit those of the PS1 molecule. This is done by implanting electrically charge atoms in the silicon to alter its electrical properties: a process called "doping." In this case, the protein worked extremely well with silicon doped with positive charges and worked poorly with negatively doped silicon.

To make the device, the researchers extracted PS1 from spinach into an aqueous solution and poured the mixture on the surface of a p-doped silicon wafer. Then they put the wafer in a vacuum chamber in order to evaporate the water away leaving a film of protein. They found that the optimum thickness was about one micron, about 100 PS1 molecules thick.

When a PS1 protein exposed to light, it absorbs the energy in the photons and uses it to free electrons and transport them to one side of the protein. That creates regions of positive charge, called holes, which move to the opposite side of the protein.

In a leaf, all the PS1 proteins are aligned. But in the protein layer on the device, individual proteins are oriented randomly. Previous modeling work indicated that this was a major problem. When the proteins are deposited on a metallic substrate, those that are oriented in one direction provide electrons that the metal collects while those that are oriented in the opposite direction pull electrons out of the metal in order to fill the holes that they produce.

As a result, they produce both positive and negative currents that cancel each other out to leave a very small net current flow. The p-doped silicon eliminates this problem because it allows electrons to flow into PS1 but will not accept them from protein. In this manner, electrons flow through the circuit in a common direction.

"This isn't as good as protein alignment, but it is much better than what we had before," said Jennings.

Graduate students Gabriel LeBlanc, Gongping Chen and Evan Gizzie contributed to the study. The research was supported by National Science Foundation grant EMR 0907619, NSF EPSCoR grant EPS 1004083 and by the Scialog Program of the Research Corporation for Scientific Advancement

Related Links
Vanderbilt University
Farming Today - Suppliers and Technology

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

No-Till Farming Helps Capture Snow and Soil Water
Pullman WA (SPX) Sep 05, 2012
A smooth blanket of snow in the winter can help boost dryland crop productivity in the summer, and no-till management is one way to ensure that blanket coverage, according to U.S. Department of Agriculture (USDA) research. Agricultural Research Service (ARS) soil scientist David Huggins conducted studies to determine how standing crop residues affect snow accumulation and soil water levels ... read more

Suomi NPP Captures Smoke Plume Images from Russian and African Fires

Remote Sensing Satellite Sends First Earth Imagery

Proba-2's espresso-cup microcamera snaps Hurricane Isaac

$3.7 Billion Reasons Why GIS Technology is The Future

CTrack Launches Lone Worker Device To Boost Protection And Peace Of Mind

Spirent Redefines Leadership in Location Testing with Solution for Hybrid Location Technology

Robbers nabbed thanks to GPS phone in loot

Fourth Galileo satellite reaches French Guiana launch site

Loss of tropical forests reduces rain

Controversy in Liberian forest logging

Amazonian deforestation may cut rainfall by a fifth

Liberia forests sold off in secret logging contracts: report

Waste cooking oil makes bioplastics cheaper

Japan toilet maker showcases 'poop-powered' motorbike

Biorefinery makes use of every bit of a soybean

Warning issued for modified algae

China 'deeply regrets' EU solar panel probe

EU hits Chinese solar companies with massive dumping probe

Constellation announces the completion of 16MW solar installation

Showing the way to improved water-splitting catalysts

Analysis sets price of global wind farms

SeaRoc charter MPI Adventure for Narec's Offshore Anemometry Hub Installation

Japan starts up first offshore wind farm

Maximum Protection against Dust; Minimal Effort

Chinese coal mining a risk?

China's Chalco scraps bid for Mongolia coal miner

Death toll in China mine blast rises to 43

China coal mine blast claims 26 lives: state media

H.K. students protest over 'brainwashing' classes

China villager bombs local government office

China's Wen says property controls still needed: Xinhua

Exiled Tibetans urge world leaders to end 'crisis'

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement