. Energy News .

When the soil holds not enough phosphorus
by Staff Writers
Lisbon, Portugal (SPX) May 21, 2012

This is an image, obtained by confocal microscopy, of a root of the tiny mustard-like plant Arabidopsis thaliana, showing (in green) the localization of the newly identified phosphate transporter, on the membranes (outlines) of the root cells. Credit: Estelle Remy, Instituto Gulbenkian de Ciencia, Portugal, 2012.

Plants cannot survive without phosphorus. It forms the backbone of many crucial molecules (such as DNA) and is a key player in energy transfer reactions. Low availability of phosphorus is a major environmental stress for plants and can lead to great losses in crop production.

But plants can't make their own phosphorus; they get all they need at the root-soil interface, in the form of inorganic phosphate (Pi), so one way to maximise the amount of phosphorus in the plant is to turn up Pi uptake by root cells.

Paula Duque and her research team at the Instituto Gulbenkian de Ciencia (Lisbon) have identified a new Pi transporter in the root cells of the tiny mustard plant Arabidopsis thaliana that acts, crucially, when Pi is scarce. Their findings, published online in the journal New Phytologist, provide insight into how phosphate transport systems may be manipulated in plants to counteract stressful conditions and thus, potentially, lead to improved crop yields.

The transporter the IGC researchers work with is a protein located on the membranes of root cells, which is consistent with it playing a role in the uptake of phosphorus from the soil.

Showing its location in the plant was the first step in a detailed study of when and how the transporter acts. The researchers went on to isolate two Arabidopsis thaliana mutants, both of which are unable to produce the transporter.

They found that, although mutants and wild-type plants grow equally well in the presence of standard amounts of Pi, things look quite different when Pi becomes scarce: the mutant plants (that do not have a functional transporter) display smaller seedlings, smaller primary roots and overdeveloped secondary roots - characteristic features of plants suffering from phosphorus deprivation.

Estelle Remy, a post-doc in the laboratory, describes the experiments, "The effects were completely reversed when we re-introduced the 'corrected' gene for the transporter into mutant plants.

This is a strong indication that it is indeed lack of the transporter that underlies increased sensitivity to low Pi. Furthermore, by forcing plants to produce more of the transporter than usual, we made them more tolerant to low Pi - which further supports a role in phosphorus uptake under these conditions."

Says Paula Duque, "In collaboration with Isabel Sa-Correia's group at the Instituto Superior Tecnico, we used yeast cells that carry the plant transporter to prove that this transporter chemically binds Pi avidly.

"We are thus confident that we have proven, unequivocally, that the Pht1;9 transporter mediates Pi uptake when Arabidopsis experiences phosphorus starvation. Its role in plants makes perfect sense: we know that plants respond to limited Pi by switching on and/or off a series of genes that lead, ultimately, to a balanced distribution of phosphorus in the plant.

"One of the processes entails triggering the production of membrane transporters. We now know that Pht1:9 (our transporter) is one of them, making it a potential target for manipulating crops that may be under environmental stress due to low phosphorus availability".

This study was carried out in collaboration with the Institute for Biotechnology and BioEngineering at the Instituto Superior Tecnico (Lisbon). It was funded by the Fundacao para a Ciencia e a Tecnologia (Portugal).

Related Links
Instituto Gulbenkian de Ciencia
Farming Today - Suppliers and Technology

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Genes underlying the key domestication process in sorghum and other cereals
Manhatten KS (SPX) May 21, 2012
A study by a team of university and government scientists led by a Kansas State University researcher, indicates that genes responsible for seed shattering - the process by which grasses disseminate their seeds - were under parallel selection during sorghum, rice and maize domestication. The study, "Parallel domestication of the Shattering1 genes in cereals," was published May 13 in the on ... read more

Moscow court upholds ban against satellite image distributor

New Carbon-Counting Instrument Leaves the Nest

China launches new remote-sensing satellite

ESA declares end of mission for Envisat

Habits and hidden journeys of ocean giants

Floating robots use GPS-enabled smartphones to track water flow

Navigating the shopping center

Geolocating soccer players

UF study finds logging of tropical forests needn't devastate environment

Brazil's threatened Awa tribe outnumbered, group says

Model Forecasts Long-Term Impacts of Forest Land-Use Decisions

Time, place and how wood is used are factors in carbon emissions from deforestation

Maps of Miscanthus genome offer insight into grass evolution

Relative reference: Foxtail millet offers clues for assembling the switchgrass genome

Lawrence Livermore work may improve the efficiency of the biofuel production cycle

Discovery of plant proteins may boost agricultural yields and biofuel production

New DuPont Solamet PV51G Provides Better Adhesion

Hanwha Solar Launches Three New Modules at SNEC Power Expo 2012

First Light Technologies launches WLB Series Solar LED Bollard

Westinghouse Solar and CBD Energy Sign Definitive Merger Agreement

US DoI Approves Ocotillo Express Wind Project

Opening Day Draws Close for Janneby Wind Testing Site

NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

Scientists find night-warming effect over large wind farms in Texas

Trapped China miner found after 17 days: state media

China's coal miners still at risk

Nine die in China coal mine blast

Buy coal? New analysis shows purchasing fossil fuel deposits best way to fight climate change

Suspect substance found before Dalai Lama visit

Chen starts life in US as China stays quiet

Asia gaming shines despite China slowdown: analysts

China embassy in US cold-shoulders Tiananmen leader

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement