Energy News  
TECH SPACE
A high-yield perovskite catalyst for the oxidation of sulfides
by Staff Writers
Tokyo, Japan (SPX) Jul 18, 2018

Top: Schematic representations of the face-sharing unit in rhombohedral BaRuO3 and corner-sharing unit in tetragonal RuO2, cubic SrRuO3, and orthorhombic CaRuO3. Bottom: Scanning electron microscope (SEM) image of BaRuO3.

Researchers at Tokyo Institute of Technology have developed a ruthenium-based perovskite catalyst[1] that shows strong activity even at low temperatures (down to 313 K). The reusable catalyst does not require additives, meaning that it can prevent the formation of toxic by-products.

The oxidation of sulfides is a commercially important process with broad applications ranging from chemicals production to environmental management.

A research group led by Keigo Kamata and Michikazu Hara of Tokyo Institute of Technology (Tokyo Tech) has succeeded in developing a barium ruthenate (BaRuO3) perovskite - the first catalyst of its kind shown to be capable of the selective oxidation of sulfides under mild conditions, with molecular oxygen (O2) as the only oxidant and without the need for additives.

Reporting their findings in ACS Applied Materials and Interfaces, the researchers state that BaRuO3 has three advantages over conventional catalysts.

Firstly, it exhibits high performance even at 313 K, a temperature much lower than the 373-423 K range reported in previous systems including other ruthenium- and manganese-based catalysts.

Secondly, its high rate of oxygen transfer indicates that it has many potential uses; for example, it is applicable to the oxidative desulfurization[2] of dibenzothiophene, which can produce a 99% yield of pure sulfone. Thirdly, the new catalyst is recyclable - the present study showed that BaRuO3 could be reused at least three times without loss of performance.

The achievement overcomes several classic limitations, such as the need for additives, toxic reagents and high reaction temperatures to achieve good catalytic performance.

The catalyst has a rhombohedral structure (see Figure 1). While other ruthenium-based catalysts investigated to date such as SrRuO3, CaRuO3 and RuO2 can all be described as having corner-sharing octahedral units, BaRuO3 has face-sharing octahedra. This configuration is thought to be one of the main reasons behind the catalyst's higher oxygen transfer capability.

The way in which BaRuO3 was synthesized - based on the sol-gel method[3] using malic acid - was also important. The researchers say: "The catalytic activity and specific surface area of BaRuO3 synthesized by the malic acid-aided method were higher than those of BaRuO3 synthesized by the polymerized complex method."

The study highlights the importance of subtle changes in the nanoscale structure of perovskite catalysts, and could provide promising leads for further research on a wide range of perovskite-based functional materials.

Research paper


Related Links
Tokyo Institute of Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Chinese scientists achieve success in nitrogen metallization
Beijing, China (SPX) Jul 17, 2018
A Chinese research team announced it has successfully metallized nitrogen at extreme conditions. This exciting result was published in Nature Communications on July 6. The team, working at the Institute of Solid State Physics at the Hefei Institutes of Physical Science (CASHIPS), developed its own pulsed-laser heating system and ultra-fast optical detection technology to conduct the experiment. Nitrogen represents about 78 percent of air by volume. Normally, it maintains in a pretty stable m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
ICESat-2 Lasers Pass Final Ground Test

Chinese foam industry responsible for rise in CFC-11 emissions

China launches two satellites for Pakistan

Report accuses China firms over ozone-depleting gas

TECH SPACE
Next four Galileo satellites fuelled for launch

NASA Tests Solar Sail for CubeSat that Will Study Near-Earth Asteroids

India's Domestic SatNav System Hits Major Roadblock Ahead of Commercial Release

Russia launches Soyuz-21b with Glonass-M navigation satellite

TECH SPACE
UN report urges nations to take better care of world's forests

World's poorest unfairly shoulder costs of tropical forest conservation

Lemur losses could threaten Madagascar's largest tree species

How mangroves help keep the planet cool

TECH SPACE
Carbon dioxide-to-methanol process improved by catalyst

Biorefineries will have only minimal effects on wood products and feedstocks markets

Finding the right balance for catalysts in the hydrogen evolution reaction

New 'promiscuous' enzyme helps turn plant waste into sustainable products

TECH SPACE
Latin America's largest solar park turns Mexican desert green

How gold nanoparticles could improve solar energy storage

Longer contracts leverage the free fuel in solar power at little OM costs

Bacteria-powered solar cell converts light to energy, even under overcast skies

TECH SPACE
Clock starts for Germany's next wind farm

ENGIE: Wind energy footprint firmed up in Norway

Batteries make offshore wind energy debut

India embarks on offshore wind energy effort

TECH SPACE
Miner Yancoal seeks dual listing in Hong Kong

Rescuers save 23 workers trapped in China mine, 11 others dead

Dutch to close two oldest coal-fired plants by 2025

U.S. wants input on coal plants of the future

TECH SPACE
Chinese democracy activist sentenced to 13 years for 'subversion'

Beijing eyes UNESCO status for Mao tomb, Tiananmen Square

Thousands march in Hong Kong as restrictions grow

US plans beefed up scrutiny of Chinese investments: Bloomberg









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.