. Energy News .




.
TECH SPACE
A mineral way to catalysis?
by Staff Writers
Cambridge UK (SPX) Feb 15, 2012

File image.

Catalytic materials, which lower the energy barriers for chemical reactions, are used in everything from the commercial production of chemicals to catalytic converters in car engines. However, with current catalytic materials becoming increasingly expensive, scientists are exploring viable alternatives.

Researchers at the University of Cambridge have now discovered that the sulphide material iron pyrite, commonly known as 'Fool's Gold', may hold the answer. Their findings were published online 10 February, in Physical Chemistry Chemical Physics.

In the past, sulphur was believed to be one of the most detrimental elements for surface chemical reactions, able to decrease dramatically the reactivity of a catalyst by occupying (poisoning) the "active sites" on the material, but more recently some sulphur materials (for example, molybdenum sulphides) have actually shown interesting catalytic properties of their own.

Using state-of-the-art electronic structure calculations, researchers led by Stephen Jenkins at the University's Department of Chemistry, explored the potential catalytic activity of iron pyrite, the most abundant sulphur mineral on Earth. In their study, the Cambridge researchers focused on the reactions between iron pyrite and nitrogen oxides (NOx), an extremely poisonous class of compounds produced (among other sources) by car engines and industrial power plants.

Dr Marco Sacchi, the first author on the paper, said: "Recent European legislation has proposed increasingly strict legislative limits on the concentration of NOx that can be emitted by vehicles; therefore the search for new and more efficient catalysts that can capture these molecules and transform them into innocuous gases such as nitrogen and water vapour, is urgently relevant."

Developing new catalysts derived from inexpensive minerals, instead of increasingly costly (and rare) precious metals, is an important area of research that involves several groups around the world.

The next steps for the Cambridge researchers will be to investigate the activity of pyrite surfaces for strategically important industrial reactions, such as the manufacture of ammonia for fertilisers, the production of synthetic hydrocarbon fuels from renewable biomass, and the extraction of hydrogen for use in future fuel cell electric vehicles.

Dr Sacchi added: "The necessity of finding reliable alternatives to overexploited catalytic materials - such as platinum, rhodium and gold - will soon become unavoidable. Experimental work is currently underway in our group, and we hope that our work will ultimately allow us to test the potential for catalytic application of a wide range of sulphidic and carbidic materials. In future, we aim to develop fruitful scientific collaborations with chemical engineering groups and with industrial partners."

The paper, "The Interaction of Iron Pyrite with Oxygen, Nitrogen and Nitrogen Oxides: a First-Principles Study", will be published in Physical Chemistry Chemical Physics on online 10 February 2012. (Article citation: Phys. Chem. Chem. Phys., 2012, DOI: 10.1039/C2CP23558G.) Authors of the work: Marco Sacchi, Martin Galbraith and Stephen Jenkins Department of Chemistry, University of Cambridge,

Related Links
Jenkins Lab
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Model analyzes shape-memory alloys for use in earthquake-resistant structures
Atlanta GA (SPX) Feb 14, 2012
Recent earthquake damage has exposed the vulnerability of existing structures to strong ground movement. At the Georgia Institute of Technology, researchers are analyzing shape-memory alloys for their potential use in constructing seismic-resistant structures. "Shape-memory alloys exhibit unique characteristics that you would want for earthquake-resistant building and bridge design and ret ... read more


TECH SPACE
NASA Scientist and Education Award Winner Leads Student Phytoplankton Study

3-D Map Study Shows Before-After of 2010 Mexico Quake

Spaceborne Precipitation Radar Ships from Japan to U.S.

Infrared Sounder on NASA's Suomi NPP Starts its Mission

TECH SPACE
US regulators pull plug on LightSquared

GIS Technology Plays Important Role to Map Disease and Health Trends

GPS court ruling leaves US phone tracking unclear

Russia May Spend Almost $12 bln on Glonass in 2012-2020

TECH SPACE
UN recognizes US Girl Scouts for palm oil effort

TECH SPACE
Ethanol mandate not the best option

Grass to gas: UGA researchers' genome map speeds biofuel development

Study: Mandating ethanol wrong solution

Sustainable land use strategies to support bioenergy

TECH SPACE
Tandem polymer solar cells set record for energy-conversion

Solar panels could double as a roof

Oldest Family Mushroom Farm in the US Goes Solar

Powell Energy and Solar Completes Complex Install for N.J. Church

TECH SPACE
Japan firms plan wind farm near Fukushima: report

New EU wind power capacity near level

TECH SPACE
PMO ensures Coal India supplies adequate to power plants

Adani to mine coal in Australia?

China coal mine accident kills 15, injures 3

TECH SPACE
China appoints new head of restive Tibetan area

China vows to take steps to improve human rights

China police officer killed in Tibetan area: state media

Tibetan nun self-immolates in China: rights groups


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement