Subscribe free to our newsletters via your
. Farming News .




BIO FUEL
A new method of converting algal oil to transportation fuels
by Staff Writers
Sendai, Japan (SPX) Jun 18, 2015


(A): Distribution of products in carbon number from squalane hydrogenolysis over ruthenium supported on cerium oxide catalyst. (B): Positions of C-C dissociation in squalane hydrogenolysis The C14-16 component is suitable for jet fuel. C5-C10 is the gasoline-range. The distribution can be changed by the reaction time. Image courtesy of Tomishige et al. For a larger version of this image please go here.

A new method of converting squalene, which is produced by microalgae, to gasoline or jet fuel, has been developed by the research group of Professor Keiichi Tomishige and Dr. Yoshinao Nakagawa from Tohoku University's Department of Applied Chemistry, and Dr. Hideo Watanabe from the University of Tsukuba.

This study is part of a research project titled 'Next-generation energies for Tohoku recovery. Task 2: R and D on using algae biofuels.' The project attempts to make use of oil-producing algae in wastewater treatment. The result will help to expand the utilization of oil that is produced from wastewater.

This new method uses a highly dispersed ruthenium catalyst supported on cerium oxide. Squalane - which is easily obtained from squalene - reacts with hydrogen over this catalyst, producing smaller hydrocarbons. The produced hydrocarbons are composed of only branched alkanes with simple distribution and do not contain toxic aromatics. These molecules have high stability and low freezing points. These features are very different from the hydrocarbons obtained by conventional petroleum refinery.

1. Background
Biofuels have attracted much attention because of the declining amount of fossil fuels around the world and the rise of global warming. Some algae produce more oil than terrestrial plants, so they are a promising source of oil.

Recently, Professor Makoto M. Watanabe and his team at the University of Tsukuba discovered a heterotrophic alga Aurantiochytrium 18W-13a strain (Fig. 1, left) which very rapidly produces squalene (Fig. 1, right) from organics in water.

In March 2011, the Great Eastern Japan Earthquake hit the Sendai area, destroying the city's wastewater treatment system. In the aftermath, Tohoku University, the University of Tsukuba and Sendai City got together to develop a next-generation wastewater treatment system which cleans wastewater and produces oil simultaneously.

Squalene is a 'heavy oil' range of hydrocarbon. It is currently gathered from deep sea sharks and used as a component of cosmetics. However, wastewater-derived squalene is not suitable for such sensitive uses and has little demand. Most uses of oil, such as gasoline and jet fuels, require reforming. This study focuses on the development of the reforming method most suited to algal oil.

2. Achievement of this study
The developed method uses a catalyst with cerium oxide support and ruthenium metal particles. The catalyst was prepared by mildly decomposing the ruthenium precursor at 300 degrees Celcius under inert atmosphere after impregnation. This procedure led to sub-nanometer-sized ruthenium particles supported on cerium oxide.

Squalane, which is easily obtained by the hydrogenation of squalene, was treated with this catalyst and hydrogen at 60 atm and 240 degrees Celcius to produce smaller hydrocarbons. This reaction did not produce toxic aromatics at all. The C-C bonds located between the methyl branches were selectively dissociated, and branched alkanes were produced without the loss of branches (Fig. 2).

Branched hydrocarbons are good components for gasoline and jet fuels because of the high octane number, low freezing point and good stability. Other noble metal catalysts were also tested, but the results were inferior to the sub-nanometer-sized ruthenium on cerium oxide catalyst in terms of activity and selectivity.

The conventional catalyst, the combination of platinum and strong solid acid, produces a very complex mixture of products because of acid-catalyzed isomerization. In this catalyst system, the deposition of carbonaceous solid on the catalyst is negligible, while it is often problematic in many catalytic reactions in petroleum refinery. The catalyst was reusable 4 times without loss of performance.

This catalytic system makes good use of the squalene's branched structure, while conventional methods are suitable to straight-chain molecules in petroleum. In the future, this catalytic conversion method can be applied to real wastewater samples and other important algal hydrocarbons, such as those from Botryococcus braunii.

The detailed results of the research will be published in June by Wiley VCH in their journal ChemSusChem. Research team: Shin-ichi Oya, Daisue Kanno, Hideo Watanabe, Masazumi Tamura, Yoshinao Nakagawa and Keiichi Tomishige Title: Catalytic Production of Branched Small Alkanes from Biohydrocarbons Publication: ChemSusChem (IF = 7.117) DOI: 10.1002/cssc.201500375, publication date: June 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Tohoku University
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Leaving on a biofueled jet plane
Berkeley CA (SPX) Jun 18, 2015
The problem is simple to understand. Molecules of carbon and other greenhouse gases absorb heat. The more greenhouse gases emitted into the atmosphere, the warmer the atmosphere becomes, exacerbating global climate change. Solving the problem is not so simple, especially with regards to aviation - the source of two-percent of the annual greenhouse gas emissions from human activity. While b ... read more


BIO FUEL
EOMAP provides shallow water bathymetry for the South China Sea

New calculations to improve CO2 monitoring from space

BlackSky Global reveals plan to image Earth in near real-time

NASA Releases Detailed Global Climate Change Projections

BIO FUEL
Russia Begins Mass Production of Glonass-K1 Navigation Satellites

Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

GLONASS to Go on Stream in 2015

Satellites make a load of difference to bridge safety

BIO FUEL
Changing climate prompts boreal forest shift

Predicting tree mortality

When trees aren't 'green'

Japanese tree plantations causing nitrogen pollution

BIO FUEL
Elucidation of chemical ingredients in rice straw

Better switchgrass, better biofuel

Mold unlocks new route to biofuels

A new method of converting algal oil to transportation fuels

BIO FUEL
Countryside Renewables to Build 5 MW Solar Project

GNB Presents Energy Storage Products at Intersolar

Cathay LA Cashes In On LADWP Solar Feed in Tariff

Imec Presents Large Area Industrial Crystalline Silicon n-PERT Solar Cell

BIO FUEL
London to end subsidies for onshore wind

Wales opens mega offshore wind farm

Victoria open for clean energy business after wind farm changes

Keeping energy clean and the countryside quiet

BIO FUEL
Top China coal executive under investigation: firm

Norway blazes trail by pulling huge sovereign fund out of coal

Coal in the crosshairs in Europe but fuelling emerging markets

Merkel under pressure on coal ahead of G7 climate push

BIO FUEL
China anti-discrimination group protests 'arrest' of staff

China 'Hogwarts' students embrace ancient tradition at graduation

China's Panchen Lama meets Xi, calls for 'national unity'

How the mighty are fallen: selfies and smiles in Zhou village




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.