. Energy News .




CIVIL NUCLEAR
Another tiny miracle: Graphene oxide soaks up radioactive waste
by Staff Writers
Houston TX (SPX) Jan 10, 2013


A new method for removing radioactive material from solutions is the result of collaboration between Rice University and Lomonosov Moscow State University. The vial at left holds microscopic particles of Graphene oxide in a solution. At right, Graphene oxide is added to simulated nuclear waste, which quickly clumps for easy removal. (Credit Anna Yu. Romanchuk/Lomonosov Moscow State University).

Graphene oxide has a remarkable ability to quickly remove radioactive material from contaminated water, researchers at Rice University and Lomonosov Moscow State University have found. A collaborative effort by the Rice lab of chemist James Tour and the Moscow lab of chemist Stepan Kalmykov determined that microscopic, atom-thick flakes of Graphene oxide bind quickly to natural and human-made radionuclides and condense them into solids. The flakes are soluble in liquids and easily produced in bulk.

The experimental results were reported in the Royal Society of Chemistry journal Physical Chemistry Chemical Physics. The discovery, Tour said, could be a boon in the cleanup of contaminated sites like the Fukushima nuclear plants damaged by the 2011 earthquake and tsunami. It could also cut the cost of hydraulic fracturing ("fracking") for oil and gas recovery and help reboot American mining of rare earth metals, he said.

Graphene oxide's large surface area defines its capacity to adsorb toxins, Kalmykov said. "So the high retention properties are not surprising to us," he said. "What is astonishing is the very fast kinetics of sorption, which is key."

"In the probabilistic world of chemical reactions where scarce stuff (low concentrations) infrequently bumps into something with which it can react, there is a greater likelihood that the 'magic' will happen with Graphene oxide than with a big old hunk of bentonite," said Steven Winston, a former vice president of Lockheed Martin and Parsons Engineering and an expert in nuclear power and remediation who is working with the researchers. "In short, fast is good."

Determining how fast was the object of experiments by the Kalmykov group. The lab tested Graphene oxide synthesized at Rice with simulated nuclear wastes containing uranium, plutonium and substances like sodium and calcium that could negatively affect their adsorption. Even so, Graphene oxide proved far better than the bentonite clays and granulated activated carbon commonly used in nuclear cleanup.

Graphene oxide introduced to simulated wastes coagulated within minutes, quickly clumping the worst toxins, Kalmykov said. The process worked across a range of pH values.

"To see Stepan's amazement at how well this worked was a good confirmation," Tour said. He noted that the collaboration took root when Alexander Slesarev, a graduate student in his group, and Anna Yu. Romanchuk, a graduate student in Kalmykov's group, met at a conference several years ago.

The researchers focused on removing radioactive isotopes of the actinides and lanthanides - the 30 rare earth elements in the periodic table - from liquids, rather than solids or gases. "Though they don't really like water all that much, they can and do hide out there," Winston said. "From a human health and environment point of view, that's where they're least welcome."

Naturally occurring radionuclides are also unwelcome in fracking fluids that bring them to the surface in drilling operations, Tour said. "When groundwater comes out of a well and it's radioactive above a certain level, they can't put it back into the ground," he said. "It's too hot. Companies have to ship contaminated water to repository sites around the country at very large expense." The ability to quickly filter out contaminants on-site would save a great deal of money, he said.

He sees even greater potential benefits for the mining industry. Environmental requirements have "essentially shut down U.S. mining of rare earth metals, which are needed for cell phones," Tour said. "China owns the market because they're not subject to the same environmental standards. So if this technology offers the chance to revive mining here, it could be huge."

Tour said that capturing radionuclides does not make them less radioactive, just easier to handle. "Where you have huge pools of radioactive material, like at Fukushima, you add Graphene oxide and get back a solid material from what were just ions in a solution," he said. "Then you can skim it off and burn it. Graphene oxide burns very rapidly and leaves a cake of radioactive material you can then reuse."

The low cost and biodegradable qualities of Graphene oxide should make it appropriate for use in permeable reactive barriers, a fairly new technology for in situ groundwater remediation, he said.

Romanchuk, Slesarev, Kalmykov and Tour are co-authors of the paper with Dmitry Kosynkin, a former postdoctoral researcher at Rice, now with Saudi Aramco. Kalmykov is radiochemistry division head and a professor at Lomonosov Moscow State University. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science at Rice.

The Office of Naval Research Multidisciplinary University Research Initiative, M-I SWACO and the Air Force Office of Scientific Research funded work at Rice. The Ministry of Education and Science of the Russian Federation, a Russian Federation President stipend to Romanchuk and the Russian Basic Research Foundation funded research at Moscow State.

.


Related Links
Tour Group
Rice University
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





CIVIL NUCLEAR
Material cleans water of nuclear wast
Houston (UPI) Jan 8, 2013
Graphene oxide can quickly remove radioactive material from contaminated water, U.S. and Russian researchers say they've discovered. Rice University chemist James Tour and Stepan Kalmykov of Lomonosov Moscow State University have found that microscopic, atom-thick flakes of graphene oxide can bind quickly to natural and human-made radionuclides and condense them into solids for easy rem ... read more


CIVIL NUCLEAR
Google maps New Year's resolutions around the world

Mission Accomplished for Landsat 5

Hyundai, Kia to go with Google Maps

Satellites eye Great Lakes invasive plant

CIVIL NUCLEAR
New location system could compete with GPS

Beidou's unique services attractive to Chinese companies

China eyes greater market share for its GPS rival

Researchers told to ward off navigation system interference

CIVIL NUCLEAR
Philippines anger at logging ban murder

World's smelliest and largest flower blooms in Brazil

Amazon deforestation brings loss of microbial communities

Deforestation in the Amazon equals net losses of diversity for microbial communities

CIVIL NUCLEAR
Tree seeds offer potential for sustainable biofuels

Engineered algae seen as fuel source

Lithuanians recycle Christmas trees into biofuel

Germany Helps Ukraine Develop Biofuel Production

CIVIL NUCLEAR
Number of Companies in the Solar Supply Chain Set to Plunge This Year

Kyocera Introduces Diamond Partner Program for Solar PV Installers

JLM Gets Cert For Gyezr Commercial Grade Solar Thermal Collectors

Concentrated Solar Power With Thermal Energy Storage Can Help Utilities

CIVIL NUCLEAR
Algonquin Power Buys 109 MW Shady Oaks Wind Power Facility

British group pans wind farm compensation

GE and International Consortium Buys 32 Wind Farms in France

Tax credit extension a reprieve for wind

CIVIL NUCLEAR
China mine blast kills 17: state media

China mine blast toll rises to 23

China mine blast kills 18: state media

US shale gas drives up coal exports

CIVIL NUCLEAR
China bloggers back censorship protest

Protesters gather at China newspaper in censorship row

China labour camp reform revealed - then deleted

German reporter in China says equipment sabotaged




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement