. Energy News .




.
TECH SPACE
Aqueous iron interacts as strong as solid iron
by Staff Writers
Berlin, Germany (SPX) Jul 11, 2012

Metal ions in solution can be examined using soft X-ray radiation. In addition to metal ions, the free fluid stream in the vacuum also contains oxygen, which, following X-ray irradiation, begins to glow, ultimately affecting metal ion absorption. Researchers can now calculate the metal ions' absorptive strength and make inferences regarding the ions' electronic structures.

HZB scientists have apply a new method - 'inverse Partial Fluorescence Yield' (iPFY) on micro-jet - which will enable them to probe the electronic structure of liquids free of sample damages. The experiments are performed in vacuum conditions at the LiXEdrom experimental chamber, where a fluid stream of micrometer diameter is moving freely through vacuum and is continuously irradiated with X-ray radiation.

These kinds of experiments are important as they reveal the interaction strength of the X-rays with the liquids and therefore allow for the structural analysis of substances dissolved in solution.

"The method will achieve its absolute apprehension when will be applied to metal ions that are part of chemical catalysts used for clean energy production and biocatalysts (protein enzymes) used in biochemical transformation inside the living cells - the team leader Prof. Aziz stated, which is the next milestone in our research progress.

Previously, these types of experiments were so far only possible if the fluid was contained between two membranes, where radiation damages and membrane induced artifacts were a crucial issue.

The researchers used X-ray radiation - generated by HZB's own electron storage ring BESSY II - to examine iron ions in aqueous solution. "We measured the absorption strength of the X-rays from our Fe 2+ and oxygen ions in the liquid micro-beam" explains Malte Gotz, who performed the experiments as part of his graduate research.

"From here, we were able to draw conclusions regarding the electronic structure of the iron ions and further more to investigate the interaction of iron ions with the water solvent, " says Gotz.

The researchers used a new approach to measuring X-ray absorption of liquids. "Oxygen, which, along with iron ions, is also present in the solution, turns out to play a rather important role. If X-ray light is used to irradiate - and thereby the oxygen that is present in the water will absorb this radiation, and will end up emitting light for a brief period of time. You might compare it to the glow-in-the-dark of a clock," Gotz explains.

If you now reduce the amount of incoming radiation by having a different material - in this case ionic iron absorbs it, it will directly reduce the amount of radiation emitted by the oxygen. "This in turn allows us to measure the absorption strength of ionic iron," says Gotz.

According to Emad Aziz, by definition, any measurement obtained at the free fluid stream is highly accurate. "A major advantage of our protocol is the fact that besides measuring only the signal from our fluid stream - without having to account for any artifacts induced by the surrounding container - we are also measuring a continuously fresh liquid sample," Aziz explains.

In their studies the scientists found that iron ions suspended in the solution interact strongly with the solvent; a conclusion drawn by the strong 'Coster Kroenig decay process' observed in the liquid system, which were thus far observed only in solid iron. "We concluded that ions interact more strongly with water than was previously thought," says Aziz.

Our next step is to apply the new method to biological functional materials where the transition metals play key biological functions- such as oxygen-carrying iron in human blood. New and deep insights into these catalysts' structure and function are the challenge of our scientific research.

HZB's Young Investigator Group for Functional Materials in Solution headed by Prof. Dr. Emad Aziz has already applied the new method in iron ions dissolved in aqueous solution. Their findings have now been published in the Journal of Physical Chemistry Letters (DOI: 10.1021/jz300403n).

Related Links
HZB
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Metamolecules that switch handedness at light-speed
Berkeley CA (SPX) Jul 11, 2012
A multi-institutional team of researchers that included scientists with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has created the first artificial molecules whose chirality can be rapidly switched from a right-handed to a left-handed orientation with a beam of light. This holds potentially huge possibilities for the application of terahertz technologies ... read more


TECH SPACE
Satellite research reveals smaller volcanoes could cool climate

NASA Satellites Examine a Powerful Summer Storm

ESA-China collaboration takes Earth observation to new heights

Bottleneck off the Orkney Islands

TECH SPACE
ESA extends its navigation lab in readiness for Galileo testing

Mission accomplished for Galileo's pathfinder GIOVE-A

New system navigates without satellites

Test: Drones' GPS navigation can be hacked

TECH SPACE
Taiwan indicts loggers for axing 2000-year-old trees

Study Slashes Deforestation Carbon Emission Estimate

Scientists develop first satellite deforestation tracker for whole of Latin America

Scientists reconstruct pre-Columbian human effects on the Amazon Basin

TECH SPACE
New biofuel process dramatically improves energy recovery

Denmark can triple its biomass production and improve the environment

Researchers tap into genetic reservoir of heat-loving bacteria

Prairie cordgrass: Highly underrated

TECH SPACE
SPG Solar's Newest SunSeeker Tracker is Built to Last in All Weather Conditions

First-of-its-kind performance insurance for solar systems

Imec's Industrial-level Silicon Solar Cells Exceed 20 Percent Efficiency

El Salvador aims high, expands solar power

TECH SPACE
GL Garrad Hassan releases update of WindFarmer 5.0

U.S moves massive wind farm plan forward

Belgium wind farm a go after EIB loan

Opponents force Wales wind farm hearings

TECH SPACE
Huge Australian coal mine wins conditional approval

Russia expands presence on Spitsbergen

Australia scraps coal port expansion

Trapped China miner found after 17 days: state media

TECH SPACE
EU parliament condemns China forced abortions

China vows crackdown after latest protest

Huge China art gift boosts Hong Kong culture district

Tension as China scraps factory plan


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement