Subscribe free to our newsletters via your
. Farming News .




CHIP TECH
Atomically thin material opens door for integrated nanophotonic circuits
by Staff Writers
Rochester NY (SPX) Sep 10, 2014


Far-field photons excite silver nanowire plasmons. The wire plasmons propagate to the wire's distal end where they efficiently interact with the two-dimensional material semiconductor molybdenum disulfide (MoS2). The plasmons are absorbed in the MoS2 creating excitons that subsequently decay converting back into propagating photons. Image courtesy Michael Osadciw, Creative Services, University of Rochester.

A new combination of materials can efficiently guide electricity and light along the same tiny wire, a finding that could be a step towards building computer chips capable of transporting digital information at the speed of light.

Reporting in The Optical Society's (OSA) high-impact journal Optica, optical and material scientists at the University of Rochester and Swiss Federal Institute of Technology in Zurich describe a basic model circuit consisting of a silver nanowire and a single-layer flake of molybdenum disulfide (MoS2).

Using a laser to excite electromagnetic waves called plasmons at the surface of the wire, the researchers found that the MoS2 flake at the far end of the wire generated strong light emission. Going in the other direction, as the excited electrons relaxed, they were collected by the wire and converted back into plasmons, which emitted light of the same wavelength.

"We have found that there is pronounced nanoscale light-matter interaction between plasmons and atomically thin material that can be exploited for nanophotonic integrated circuits," said Nick Vamivakas, assistant professor of quantum optics and quantum physics at the University of Rochester and senior author of the paper.

Typically about a third of the remaining energy would be lost for every few microns (millionths of a meter) the plasmons traveled along the wire, explained Kenneth Goodfellow, a graduate student at Rochester's Institute of Optics and lead author of the Optica paper.

"It was surprising to see that enough energy was left after the round-trip," said Goodfellow.

Photonic devices can be much faster than electronic ones, but they are bulkier because devices that focus light cannot be miniaturized nearly as well as electronic circuits, said Goodfellow.

The new results hold promise for guiding the transmission of light, and maintaining the intensity of the signal, in very small dimensions.

Ever since the discovery of graphene, a single layer of carbon that can be extracted from graphite with adhesive tape, scientists have been rapidly exploring the world of two-dimensional materials. These materials have unique properties not seen in their bulk form.

Like graphene, MoS2 is made up of layers that are weakly bonded to each other, so they can be easily separated. In bulk MoS2, electrons and photons interact as they would in traditional semiconductors like silicon and gallium arsenide. As MoS2 is reduced to thinner and thinner layers, the transfer of energy between electrons and photons becomes more efficient.

The key to MoS2's desirable photonic properties is in the structure of its energy band gap. As the material's layer count decreases, it transitions from an indirect to direct band gap, which allows electrons to easily move between energy bands by releasing photons. Graphene is inefficient at light emission because it has no band gap.

Combining electronics and photonics on the same integrated circuits could drastically improve the performance and efficiency of mobile technology. The researchers say the next step is to demonstrate their primitive circuit with light emitting diodes.

K. Goodfellow, R. Beams, C. Chakraborty, L. Novotny, A.N. Vamivakas "Integrated nanophotonics based on nanowire plasmons and atomically-thin material" Optica Vol. 1, Issue 3, pp.149-152 (2014).

.


Related Links
University of Rochester
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Computer simulations visualize ion flux
Vienna, Austria (SPX) Sep 04, 2014
Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology and Toxicology, University of Vienna investigated how ion flux through a voltage gated sodium ion channel works in detail. Since this process is incredibly fast (up to 100 mill ... read more


CHIP TECH
Severe flooding in Northern Pakistan photographed by NASA

EIAST announces Remote Sensing Applications Competition 2014

NASA's RapidScat: Some Assembly Required - in Space

NASA Awards Ozone Mapping and Profiling Suite Modification for JPS-2 Mission

CHIP TECH
Thales to improve GPS satellite navigation system

Exelis boasts of its GPS signal interference product

Lockheed Martin-Built gps IIR/IIR-M satellites reach 200 years of combined operational life

Australia approves GPS project

CHIP TECH
Brazil builds giant tower in Amazon to monitor climate

Climate change could 'fundamentally alter' US forests

Amazon deforestation up 29 pc in 2013 -- Brazil

New NASA Probe Will Study Earth's Forests in 3-D

CHIP TECH
3D imaging may improve understanding of biofuel plant materials

Ethanol fireplaces: the underestimated risk

ACCESS II Confirms Jet Biofuel Burns Cleaner

Scientists create renewable fossil fuel alternative using bacteria

CHIP TECH
SolarBOS Announces Solutions for String Inverters

Cree SiC MOSFETs Help Power Japan's Growing Solar Energy Infrastructure

Solar Capacity in Central America to Surge

X-ray imaging paves way for novel solar cell production

CHIP TECH
Wind Turbines Outperforming Expectations at Honda Transmission Plant

Stealth wind turbines to become operational in France in 2015

EU calls for study of 2020 renewable energy targets

Go green and prosper, British government says

CHIP TECH
Australia approves huge India-backed mine

Beijing shuts large coal power plant to curb smog: report

CHIP TECH
China's Xi starts South Asia tour in "paradise"

Chinese activist's trial postponed as lawyers protest

Mother of Briton murdered in China renews compensation call

Dog 'cleaned' in washing machine sparks anger in Hong Kong




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.