. Energy News .




TECH SPACE
Building better structural materials
by Staff Writers
Washington DC (SPX) Dec 17, 2012


The deformation of nanocrystalline materials has been controversial because it was thought that below a certain grain size, the structural irregularities would not form and the deformation would be dictated by motions of the boundary between grains instead.

When materials are stressed, they eventually change shape. Initially these changes are elastic, and reverse when the stress is relieved. When the material's strength is exceeded, the changes become permanent.

This could result in the material breaking or shattering, but it could also re-shape the material, such as a hammer denting a piece of metal. Understanding this last group of changes is the focus of research from a team including Carnegie's Ho-kwang "Dave" Mao.

Their breakthrough research on the behavior nickel nanocrystals under intense pressure is published December 14 by Science. Their findings could help physicists and engineers create stronger, longer-lasting materials. It can also help earth scientists understand tectonic events and seismicity.

It is believed that permanent changes to metallic grains when under pressure are associated with the movement of structural irregularities in the grains, called dislocations.

But the deformation of nanocrystalline materials has been controversial because it was thought that below a certain grain size, the structural irregularities would not form and the deformation would be dictated by motions of the boundary between grains instead.

According to computer analysis, this critical limit would occur in nanocrystals at sizes between 10 and 30 nm in size.

Experimental work on nanocrystals under pressure has been limited by technical hurdles. But new capabilities using a technique called radial diamond anvil cell x-ray diffraction has opened the door to moving beyond computer modeling and into the lab.

The team, led by Bin Chen of the Lawrence Berkeley National Laboratory, was able to show that the activities of the structural irregularities that accompany deformation were occurring even in nickel nanocrystals of 3 nanometers in size when they were compressed to higher than 183,000 times normal atmospheric pressure (18.5 gigapascals).

This demonstrates that so-called dislocation-associated deformation is a function of both pressure and particle size, as previously thought, but that the particle size can be smaller than computer modeling had anticipated.

"These findings help constrain the fundamental physics of deformation under pressure on a very small scale," Mao said. "They also demonstrate the importance of the radial diamond anvil cell x-ray diffraction tool for helping us understand these processes."

.


Related Links
Carnegie Institution
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





TECH SPACE
Space-Age Ceramics Get Their Toughest Test
Berkeley CA (SPX) Dec 11, 2012
Advanced ceramic composites can withstand the ultrahigh operational temperatures projected for hypersonic jet and next generation gas turbine engines, but real-time analysis of the mechanical properties of these space-age materials at ultrahigh temperatures has been a challenge - until now. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkel ... read more


TECH SPACE
Wildfires Light Up Western Australia

Environmental satellite produces first photo of Earth

Google Maps returns to iPhone after Apple fiasco

NASA-NOAA Satellite Reveals New Views of Earth at Night

TECH SPACE
Third Boeing GPS IIF Begins Operation After Early Handover to USAF

Putin Urges CIS Countries to Join Glonass

Third Galileo satellite begins transmitting navigation signal

Retired GIOVE-A satellite helps SSTL demonstrate first High Altitude GPS navigation fix

TECH SPACE
As Amazon urbanizes, rural fires burn unchecked

Global drive in support of Brazil's threatened Awa tribe

World's biggest, oldest trees are dying: research

'Come out of the forest' to save the trees

TECH SPACE
NC State Study Offers Insight Into Converting Wood to Bio-Oil

Can Algae-Derived Oils Support Large-Scale, Low-Cost Biofuels Production?

Plastic packaging industry is moving towards completely bio-based products

Gases from Grasses

TECH SPACE
Solar panel companies in federal probe

Gulf oil states get hot for solar power

Asian Supermarket Distribution Center Completes Solar Installation

KYOCERA Solar Panels Power Innovative Solar-to-EV Project with Smart City San Diego at San Diego Zoo

TECH SPACE
Ground broken on Irish Midlands wind farm

GE, MetLife and Union Bank Invest in Kansas Wind Farm

Wind speeds in southern New England declining inland, remaining steady on coast

Brazil advances wind power development

TECH SPACE
China mine blast kills 17: state media

China mine blast toll rises to 23

China mine blast kills 18: state media

US shale gas drives up coal exports

TECH SPACE
China gives hijackers death sentences

US lawmakers, Chinese friends seek Liu Xiaobo release

Top China provincial leader sacked: Xinhua

Two Tibetans die in latest self-immolations




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement