. Energy News .




FARM NEWS
CSHL-led team discovers new way in which plants control flower production
by Staff Writers
Cold Spring Harbor NY (SPX) Nov 14, 2012


An image of a tomato flower (center) surrounded by flowers from tobacco (white and pink) and petunia (red). All three are all members of the Solanaceae family of plants, which also includes the crops pepper and eggplant. Solanaceae species show remarkable variation in the number of flowers they produce on their reproductive shoots called inflorescences and mutants in tomato like the single flower mutants shown at bottom recreate the inflorescence architectures of single single-flowered Solanaceae species like pepper, petunia, and tobacco. Credit: Copyright Zach Lippman, Ph.D. Cold Spring Harbor Laboratory.

Flowers don't just catch our eyes, they catch those of pollinators like bees as well. They have to, in order to reproduce. Because plants need to maximize the opportunity for pollinators to gain access to their seeds, variations in the timing of flowering can have profound effects on flower, fruit, and seed production, and consequently agricultural yields.

We know that the major driving forces of flowering are external factors such as light and temperature. However, new research from CSHL Assistant Professor Zach Lippman, Ph.D. and his collaborators, published online in Nature Genetics, shows there is a second, previously unknown mechanism controlling flowering.

Using the tomato plant as their model, Lippman and CSHL co-authors, Cora MacAlister, Soon Ju Park and Ke Jiang, show that loss of control of the timing of flowering, such that the flowering program turns on too fast, results in production of only a single flower on each branch, rather than the usual 7 to 10.

Conversely, slowing down the flowering program enables more flowering branches to grow, which means more fruit.

Such dissection of the timing mechanism of flowering in plants like tomato is leading to new strategies for increasing agricultural yield in important crops.

Timing of flowering is precise

During the flowering process, plants form reproductive shoot structures called inflorescences. These structures derive from small stem cell populations buried inside the tiny growing tips of plants called meristems. As plants sense and respond to signals from light and/or temperature, it is at the meristems where plant organs - leaves or flowers - are formed.

Domesticated tomato plants, which we know and love for their shiny, tasty red fruit, typically grow several multi-flowered inflorescences on each shoot.

Each inflorescence is arranged in a zigzag pattern of 7 to 10 flowers on a single branch. Curiously, many wild species of tomato produce multiple branches on each inflorescence, with each branch having many flowers, thereby increasing the reproductive potential of the plant.

In rare cases, genetic mutants of domesticated tomatoes form broom-like inflorescences with dozens of branches like the wild species. Interestingly, there is another class of mutants that produce just a solitary, sometimes abnormal looking, flower.

In previous research Lippman and others reasoned that the timing of flowering would be important in determining whether an inflorescence was highly branched or not.

By characterizing the activity of thousands of genes involved in the flowering process of tomato, Lippman and members of his laboratory revealed a "molecular clock" coordinating whether meristems give rise to branched or unbranched inflorescences.

In their newly published research, they reveal that one of those genes plays a critical role in keeping the clock from ticking too fast.

TMF controls synchronization of the flowering transition

"In order for a plant to determine when and where to switch from making leaves to making flowers everything has to be timed perfectly," says Lippman. "We know that the flowering process is regulated by temperature and day length; these control one aspect of the timing. But now we've found a new timing mechanism."

The moment of insight for Lippman and his team, including colleagues at the Unite de Recherche en Genomique Vegetale in Evry, France and the Weizmann Institute of Science in Rehovot, Israel, came when studying mutant tomato plants.

"We found a gene that when mutated converts the typical tomato multi-flowered inflorescence into one with a single flower," Lippman says. Interestingly, this caused the tomato plant to mimic other single-flowered plants of the same family, called Solanaceae, which includes the eggplant, tobacco, petunia, and pepper plants.

The gene Lippman's team found, called TERMINATING FLOWER (TMF), had not been previously known to have such a crucial role in plant growth. This was despite the fact the flowering process and the genes that control it have been studied in great depth over decades in many plant systems, including the model plant Arabidopsis as well rice and corn (maize).

"It seems TMF regulates a previously unknown pathway that is involved in the timing of flowering. The reason that mutations in TMF cause single-flower inflorescences is that the plant is tricked into thinking it is time to make a flower when it is still in the vegetative state - the phase of growth that precedes flowering when leaves are still being made," explains Lippman.

Flowering is a tightly coordinated process, so when TMF function is lost the process becomes de-synchronized and uncoordinated. The external signals from light and temperature have not yet reached the critical threshold to tell the plant it is ready to make flowers, yet the program for making flowers starts anyway. Thus TMF acts as an internal check on the flowering transition. "Its normal function is to delay flowering, to gently slow it down, so that it doesn't happen too precociously," Lippman says.

If plants make flowers too quickly, there may not be enough energy from leaves to support those flowers and fruits. But Lippman suggests that some species of plants have taken advantage of this mechanism and evolved to make more or less flowers per inflorescence. It may be that in nature, some plants are more successful when making fewer flowers over a longer period of time, for example.

The Solanaceae species to which tomato belongs contains examples of all types of inflorescences, which is why Lippman finds the model is so fascinating to study. By learning about the genetic switches controlling flower production, the hope is that they can be manipulated in agricultural crops like tomato to improve yield.

"Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene" is published online in Nature Genetics on November 11th, 2012. The authors are: Cora A. MacAlister, Soon Ju Park, Ke Jiang, Fabien Marcel, Abdelhafid Bendahmane, Yimon Izkovich, Yuval Eshed, and Zachary B. Lippman. The paper can be obtained online at doi:10.1038/ng.2465 via Nature Genetics

.


Related Links
Cold Spring Harbor Laboratory
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





FARM NEWS
Texas cotton getting a genetic 'tune-up'
College Station TX (SPX) Nov 14, 2012
Can you imagine trying to build a competitive race car with old parts? Chances are, the entry would not fare well at the Indy 500. Very much the same thing might be said about today's crops, according to a Texas A and M AgriLife Research scientist. "Contemporary crops such as Texas cotton are like finely tuned racing machines - they need high quality parts to perform optimally," said Dr. D ... read more


FARM NEWS
Surveying Earth's interior with atomic clocks

Storms, Ozone, Vegetation and More: NASA-NOAA Suomi NPP Satellite Returns First Year of Data

NASA's SPoRT Team Tracks Hurricane Sandy

Sizing up biomass from space

FARM NEWS
Quattro Group Gains Visibility And Control With Ctrack

Gazprom to Launch Two Satellites by Yearend

Research cruise testing EGNOS satnav for ships

Two SOPS accepts command and control of newest GPS satellite

FARM NEWS
Inspiration from Mother Nature leads to improved wood

Action needed to prevent more devastating tree diseases entering the UK

Texas A and M scientist taking infrared laser look at forests

Forest fertilization can increase production, decrease carbon emissions

FARM NEWS
14,000 Jobs Possible from Military Biofuels Initiative

Airbus, EADS and ENN make a push for new generation aviation fuels

A Better Route to Xylan

More Bang for the Biofuel Buck

FARM NEWS
2012 National Solar Jobs Census Finds Installers Leading the Way

Balfour Beatty Communities and SolarCity Team Up

Midwestern Solar Icon Moves into Solar

Eclipsall Solar PV Panels Featured on Three Municipal Buildings

FARM NEWS
AREVA deploys its industrial plan to produce a 100 percent French wind power technology

Gannets could be affected by offshore energy developments

Scotland approves 85MW Highlands wind farm

China backs suit against Obama over wind farm deal

FARM NEWS
US shale gas drives up coal exports

Coal investment in Queensland unlikely

Australian coal projects mega polluters?

Australian coal basin may be top 10 polluter: Greenpeace

FARM NEWS
China's Xi says party faces problems including graft

China appoints respected economist to target graft

Penpics of China's new Communist Party leaders

Child journalists grill ministers at China congress




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement