Energy News  
TIME AND SPACE
Can cosmic inflation be ruled out
by Staff Writers
Cambridge UK (SPX) Nov 04, 2022

Cosmic inflation is a popular scenario for the earliest phase in the evolution of the Universe.

Astrophysicists say that cosmic inflation - a point in the Universe's infancy when space-time expanded exponentially, and what physicists really refer to when they talk about the 'Big Bang' - can in principle be ruled out in an assumption-free way.

The astrophysicists, from the University of Cambridge, the University of Trento, and Harvard University, say that there is a clear, unambiguous signal in the cosmos which could eliminate inflation as a possibility. Their paper, published in The Astrophysical Journal Letters, argues that this signal - known as the cosmic graviton background (CGB) - can feasibly be detected, although it will be a massive technical and scientific challenge.

"Inflation was theorised to explain various fine-tuning challenges of the so-called hot Big Bang model," said the paper's first author Dr Sunny Vagnozzi, from Cambridge's Kavli Institute for Cosmology, and is now based at the University of Trento. "It also explains the origin of structure in our Universe as a result of quantum fluctuations.

"However, the large flexibility displayed by possible models for cosmic inflation which span an unlimited landscape of cosmological outcomes raises concerns that cosmic inflation is not falsifiable, even if individual inflationary models can be ruled out. Is it possible in principle to test cosmic inflation in a model-independent way?"

Some scientists raised concerns about cosmic inflation in 2013, when the Planck satellite released its first measurements of the cosmic microwave background (CMB), the universe's oldest light.

"When the results from the Planck satellite were announced, they were held up as a confirmation of cosmic inflation," said Professor Avi Loeb from Harvard University, Vagnozzi's co-author on the current paper. "However, some of us argued that the results might be showing just the opposite."

Along with Anna Ijjas and Paul Steinhardt, Loeb was one of those who argued that results from Planck showed that inflation posed more puzzles than it solved, and that it was time to consider new ideas about the beginnings of the universe, which, for instance. may have begun not with a bang but with a bounce from a previously contracting cosmos.

The maps of the CMB released by Planck represent the earliest time in the universe we can 'see', 100 million years before the first stars formed. We cannot see farther.

"The actual edge of the observable universe is at the distance that any signal could have travelled at the speed-of-light limit over the 13.8 billion years that elapsed since the birth of the Universe," said Loeb. "As a result of the expansion of the universe, this edge is currently located 46.5 billion light years away. The spherical volume within this boundary is like an archaeological dig centred on us: the deeper we probe into it, the earlier is the layer of cosmic history that we uncover, all the way back to the Big Bang which represents our ultimate horizon. What lies beyond the horizon is unknown."

In could be possible to dig even further into the universe's beginnings by studying near-weightless particles known as neutrinos, which are the most abundant particles that have mass in the universe. The Universe allows neutrinos to travel freely without scattering from approximately a second after the Big Bang, when the temperature was ten billion degrees. "The present-day universe must be filled with relic neutrinos from that time," said Vagnozzi.

Vagnozzi and Loeb say we can go even further back, however, by tracing gravitons, particles which mediate the force of gravity.

"The Universe was transparent to gravitons all the way back to the earliest instant traced by known physics, the Planck time: 10 to the power of -43 seconds, when the temperature was the highest conceivable: 10 to the power of 32 degrees," said Loeb. "A proper understanding of what came before that requires a predictive theory of quantum gravity, which we do not possess."

Vagnozzi and Loeb say that once the Universe allowed gravitons to travel freely without scattering, a relic background of thermal gravitational radiation with a temperature of slightly less than one degree above absolute zero should have been generated: the cosmic graviton background (CGB).

However, the Big Bang theory does not allow for the existence of the CGB, as it suggests that the exponential inflation of the newborn universe diluted relics such as the CGB to a point that they are undetectable. This can be turned into a test: if the CGB were detected, clearly this would rule out cosmic inflation, which does not allow for its existence.

Vagnozzi and Loeb argue that such a test is possible, and the CGB could in principle be detected in future. The CGB adds to the cosmic radiation budget, which otherwise includes microwave and neutrino backgrounds. It therefore affects the cosmic expansion rate of the early Universe at a level that is detectable by next-generation cosmological probes, which could provide the first indirect detection of the CGB.

However, to claim a definitive detection of the CGB, the 'smoking gun' would be the detection of a background of high-frequency gravitational waves peaking at frequencies around 100 GHz. This would be very hard to detect, and would require tremendous technological advances in gyrotron and superconducting magnets technology. Nevertheless, say the researchers, this signal may be within our reach in future.

Research Report:The Challenge of Ruling Out Inflation via the Primordial Graviton Background


Related Links
University of Cambridge
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
UNH research tests fundamental force advancing understanding of universe
Durham NH (SPX) Nov 02, 2022
Research from a team of physicists at the University of New Hampshire is advancing the understanding of how protons, which comprise 95% of the mass of the visible universe, interact with each other. The results provide a benchmark for testing the strong force, one of the four fundamental forces in nature. "There's a lot still unanswered about both of those things, the proton and the strong force," said David Ruth, Ph.D. candidate in physics and lead author. "This brings us a little bit closer to t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Ceramics that breathe oxygen at lower temperatures help us breathe cleaner air

Copernicus LSTM Expansion mission helping climate change adaptation

Alpha Data powers NASA's climate change mineral dust detector on Space Station

EnMAP is ready for science

TIME AND SPACE
ESA plans for low-orbiting navigation satellites

At Sandia Labs, a vision for navigating when GPS goes dark

Mexico denies Russia space deal will aid spying

Taoglas' multi-band GNSS front ends simplify and accelerate product development

TIME AND SPACE
No 'easy road' for Brazil's Lula, as world awaits Amazon action

Bye-Bye Biomass: forest monitoring satellite departs for final testing before launch

Germany says ready to resume Brazil deforestation aid after Lula victory

Land-based climate plans 'unrealistic': report

TIME AND SPACE
CABBI team adds powerful new dimension to phenotyping next-gen bioenergy crop

Maersk plans large-scale green fuel production in Spain

Sustainable Aviation Fuel reduces Airbus' Scope 1 emissions

Engineering duckweed to produce oil for biofuels, bioproducts

TIME AND SPACE
Ultrathin solar cells promise improved satellite performance

Bridging periods of reduced sunlight and peak loads in a climate-neutral way using salt

Africa renewable energy investment at 11-year low: research

Solar power, farming revive Tunisia school as social enterprise

TIME AND SPACE
Nine countries join alliance to boost offshore windpower

UAE, Egypt ink major wind energy deal on COP27 sidelines

US to offer leases for Pacific offshore wind energy platforms

Wind turbine maker Siemens Gamesa plans 2,900 jobs cuts

TIME AND SPACE
Vietnam struggles to break one of world's biggest coal addictions

Mongolia sells more coal to China as world shuns polluting fuel

Rich nations greenlight S.Africa coal transition plan; World Bank commits $500BN

'Close the windows': Lebanon power plant sparks cancer fears

TIME AND SPACE
CBC shuts down China bureau citing lack of visa

CBC shuts down China bureau citing lack of visa

'Law and order returned' Hong Kong's US-sanctioned leader tells bankers

Scholz vows not to ignore 'controversies' on China visit









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.