|
|
| . | ![]() |
. |
|
|
by Staff Writers Copenhagen, Denmark (SPX) Dec 23, 2014
To feed the world's growing population--expected to reach nine billion by the year 2050--we will have to find ways to produce more food on less farmland, without causing additional harm to the remaining natural habitat. A feature review, to be published in the Cell Press journal Trends in Plant Science, points the way to intensifying agriculture sustainably by fixing weaknesses that have sprung up quite by accident in the process of traditional crop breeding over the course of thousands of years. Michael G. Palmgren of the University of Copenhagen and his colleagues suggest that the most efficient way to regain those lost properties is by reinserting good genes back into our crops after isolating them from related plants or to by using precision methods to repair faulty genes. "Once the genes that have been mutated unintentionally have been identified, the next step would be to reestablish wild-type properties. Rewilding would allow crop plants not only to better utilize available resources in the environment and have higher nutritional value, but also to better resist diseases, pests, and weeds," says Palmgren. While this back-to-nature breeding has great potential, there is one hitch, because crops restored to a more natural state in this manner would be classified, under current definitions, as genetically modified organisms (GMOs). "Studies tell us that many consumers look with some reservation upon GMO-based products, in part because they are considered alien," says Palmgren. "Rewilded crops represent a different path, yet if branded as GM products may likely face considerable challenges for market penetration." Palmgren notes that a discussion about which products should be labeled as GMOs is necessary. "It may be useful to distinguish between the product (the plant) and the process (the breeding technology)," he says. If a crop regains beneficial properties of a wild relative, such as disease resistance, it makes little sense to consider one plant as natural and the other as alien purely based on the method used to reach the same end result. The bottom line for Palmgren is this: the plants we eat and depend on are not the same as those originally found in the wild, whether they've been genetically modified or not. "Reintroduction of some of the lost properties does not make our crops alien," he says.
Related Links University of Copenhagen Farming Today - Suppliers and Technology
|
| ||||||||||||||||||||
| The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |