Energy News  
TECH SPACE
Cementless fly ash binder makes concrete 'green'
by Staff Writers
Houston TX (SPX) Jun 20, 2018

A scanning electron microscope image shows spherical particles in type C fly ash used by Rice University engineers to make cementless binder for concrete.

Rice University engineers have developed a composite binder made primarily of fly ash, a byproduct of coal-fired power plants, that can replace Portland cement in concrete.

The material is cementless and environmentally friendly, according to Rice materials scientist Rouzbeh Shahsavari, who developed it with graduate student Sung Hoon Hwang.

Fly ash binder does not require the high-temperature processing of Portland cement, yet tests showed it has the same compressive strength after seven days of curing. It also requires only a small fraction of the sodium-based activation chemicals used to harden Portland cement.

The results are reported in the Journal of the American Ceramic Society.

More than 20 billion tons of concrete are produced around the world every year in a manufacturing process that contributes 5 to 10 percent of carbon dioxide to global emissions, surpassed only by transportation and energy as the largest producers of the greenhouse gas.

Manufacturers often use a small amount of silicon- and aluminum-rich fly ash as a supplement to Portland cement in concrete. "The industry typically mixes 5 to 20 percent fly ash into cement to make it green, but a significant portion of the mix is still cement," said Shahsavari, an assistant professor of civil and environmental engineering and of materials science and nanoengineering.

Previous attempts to entirely replace Portland cement with a fly ash compound required large amounts of expensive sodium-based activators that negate the environmental benefits, he said. "And in the end it was more expensive than cement," he said.

The researchers used Taguchi analysis, a statistical method developed to narrow the large phase space - all the possible states - of a chemical composition, followed by computational optimization to identify the best mixing strategies.

This greatly improved the structural and mechanical qualities of the synthesized composites, Shahsavari said, and led to an optimal balance of calcium-rich fly ash, nanosilica and calcium oxide with less than 5 percent of a sodium-based activator.

"A majority of past works focused on so-called type F fly ash, which is derived from burning anthracite or bituminous coals in power plants and has low calcium content," Shahsavari said. "But globally, there are significant sources of lower grade coal such as lignite or sub-bituminous coals. Burning them results in high-calcium, or type C, fly ash, which has been more difficult to activate.

"Our work provides a viable path for efficient and cost-effective activation of this type of high-calcium fly ash, paving the path for the environmentally responsible manufacture of concrete. Future work will assess such properties as long-term behavior, shrinkage and durability."

Shahsavari suggested the same strategy could be used to turn other industrial waste, such as blast furnace slag and rice hulls, into environmentally friendly cementitious materials without the use of cement.

Research paper


Related Links
Rice University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Scientists predict a new superhard material with unique properties
Moscow, Russia (SPX) Jun 19, 2018
Chemists from Russia and China have predicted a new superhard material that can be used in drilling, machine building and other fields. The new tungsten boride they discovered outperforms the widely used 'pobedit' - a hard tungsten carbide and cobalt composite material with artificial diamond interspersing. The results of their study were published in the reputable scientific journal, The Journal of Physical Chemistry Letters. Superhard substances have a broad scope of application spanning well dr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
MOF material offers selective, reversible and repeatable capture of toxic atmospheric gas

Ammonia distribution in Earth's upper atmosphere explained

Close encounters of the fishy kind

Decades of satellite monitoring reveal Antarctic ice loss

TECH SPACE
UK says shut out of EU's Galileo sat-nav contracts

Woman drowns in Prague drains playing GPS treasure hunt

What exclusion from Galileo could mean for UK

GMV competing to develop the Galileo Ground Control Segment in brand new premises

TECH SPACE
'Shocking' die-off of Africa's oldest baobabs

New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery

TECH SPACE
Orange, tea tree and eucalyptus oils sweeten diesel fumes

Critical plant gene takes unexpected detour that could boost biofuel yields

'Tricking' bacteria into hydroxylating benzene

How to suck carbon dioxide from the sky for fuels and more

TECH SPACE
Solar FlexRack completes shipments to 71 MW solar project in North Carolina

Wartsila leading along the path towards a 100% renewable energy future

German utility makes solar debut in Texas

Solar cells combining silicon with perovskite push achieve record efficiency over 25 percent

TECH SPACE
New wind turbines are even efficient in low winds

Cryptocurrency blowing in the wind as mine opens in Estonia

U.S. Atlantic states eye offshore wind leadership

European wind energy generation potential in a warmer world

TECH SPACE
Rescuers save 23 workers trapped in China mine, 11 others dead

Dutch to close two oldest coal-fired plants by 2025

U.S. wants input on coal plants of the future

Two Polish miners killed, three missing after quake

TECH SPACE
Malaysia power shift hits China infrastructure drive

Ex-head of China insurance regulator pleads guilty to bribes

China's transgenders 'step forward' from the shadows

Sweden jails Chinese man for spying on Tibetan refugees









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.