Subscribe free to our newsletters via your
. Farming News .




CARBON WORLDS
Competition for Graphene
by Staff Writers
Berkeley CA (SPX) Aug 28, 2014


Illustration of a MoS2/WS2 heterostructure with a MoS2 monolayer lying on top of a WS2 monolayer. Electrons and holes created by light are shown to separate into different layers. Image courtesy of Feng Wang group.

A new argument has just been added to the growing case for graphene being bumped off its pedestal as the next big thing in the high-tech world by the two-dimensional semiconductors known as MX2 materials.

An international collaboration of researchers led by a scientist with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has reported the first experimental observation of ultrafast charge transfer in photo-excited MX2 materials. The recorded charge transfer time clocked in at under 50 femtoseconds, comparable to the fastest times recorded for organic photovoltaics.

"We've demonstrated, for the first time, efficient charge transfer in MX2 heterostructures through combined photoluminescence mapping and transient absorption measurements," says Feng Wang, a condensed matter physicist with Berkeley Lab's Materials Sciences Division and the University of California (UC) Berkeley's Physics Department.

"Having quantitatively determined charge transfer time to be less than 50 femtoseconds, our study suggests that MX2 heterostructures, with their remarkable electrical and optical properties and the rapid development of large-area synthesis, hold great promise for future photonic and optoelectronic applications."

Wang is the corresponding author of a paper in Nature Nanotechnology describing this research.

The paper is titled "Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures." Co-authors are Xiaoping Hong, Jonghwan Kim, Su-Fei Shi, Yu Zhang, Chenhao Jin, Yinghui Sun, Sefaattin Tongay, Junqiao Wu and Yanfeng Zhang. MX2 monolayers consist of a single layer of transition metal atoms, such as molybdenum (Mo) or tungsten (W), sandwiched between two layers of chalcogen atoms, such as sulfur (S).

The resulting heterostructure is bound by the relatively weak intermolecular attraction known as the van der Waals force. These 2D semiconductors feature the same hexagonal "honeycombed" structure as graphene and superfast electrical conductance, but, unlike graphene, they have natural energy band-gaps.

This facilitates their application in transistors and other electronic devices because, unlike graphene, their electrical conductance can be switched off. "Combining different MX2 layers together allows one to control their physical properties," says Wang, who is also an investigator with the Kavli Energy NanoSciences Institute (Kavli-ENSI).

"For example, the combination of MoS2 and WS2 forms a type-II semiconductor that enables fast charge separation. The separation of photoexcited electrons and holes is essential for driving an electrical current in a photodetector or solar cell."

In demonstrating the ultrafast charge separation capabilities of atomically thin samples of MoS2/WS2 heterostructures, Wang and his collaborators have opened up potentially rich new avenues, not only for photonics and optoelectronics, but also for photovoltaics.

"MX2 semiconductors have extremely strong optical absorption properties and compared with organic photovoltaic materials, have a crystalline structure and better electrical transport properties," Wang says. "Factor in a femtosecond charge transfer rate and MX2 semiconductors provide an ideal way to spatially separate electrons and holes for electrical collection and utilization."

Wang and his colleagues are studying the microscopic origins of charge transfer in MX2 heterostructures and the variation in charge transfer rates between different MX2 materials.

"We're also interested in controlling the charge transfer process with external electrical fields as a means of utilizing MX2 heterostructures in photovoltaic devices," Wang says.

.


Related Links
Lawrence Berkeley National Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
On the edge of graphene
Teddington, UK (SPX) Aug 21, 2014
Researchers at the National Physical Laboratory (NPL) have discovered that the conductivity at the edges of graphene devices is different to that of the central material. Local scanning electrical techniques were used to examine the local nanoscale electronic properties of epitaxial graphene, in particular the differences between the edges and central parts of graphene Hall bar devices. Th ... read more


CARBON WORLDS
NASA Radar System Surveys Napa Valley Quake Area

NASA Begins Hurricane Mission with Global Hawk Flight to Cristobal

How might El Nino affect wildfires in California?

Unique Database of Satellite Images of Russia Exceeds 3.5 Mln Items

CARBON WORLDS
Galileo Satellites Incident Likely Result of Software Errors

Too Early for Conclusions on Galileo Satellites Incident

Russia's Foton-M Satellite Landing Scheduled for September 1

Indian start-up launches shoes that show you the way

CARBON WORLDS
Brazil cracks 'biggest' Amazon deforestation gang

Brazil arrests 8 in Amazon deforestation swoop

World's primary forests on the brink

New analysis links tree height to climate

CARBON WORLDS
VIASPACE Establishes Giant King Grass Research Collaboration With California

Cenex Tank Program assists retailers offering E15

SG Preston Announces World's Largest Purpose-Built Renewable Diesel Plant

Ceres to Expand Product Development in Sorghum and Sugarcane

CARBON WORLDS
Minnesota Power, National Guard in solar energy deal

Solar System Transforms Fallow Land Into Money Generating Asset

HelioSage Energy Announces Sale of 12 Solar Projects in North Carolina

SunShare Announces Program to Provide Free Electricity

CARBON WORLDS
Real 20 per cent Renewable Energy Target would decimate industry

Scottish marine power a testament of unity, London says

Scottish government approves build of Iberdrola wind farm

U.S. Wind Inc. wins rights to wind energy offshore Maryland

CARBON WORLDS
Australia approves huge India-backed mine

Beijing shuts large coal power plant to curb smog: report

Twenty-two dead in southwest China coal mine accident

CARBON WORLDS
China insists on right to choose candidates for HK leader

Four killed in Chinese school stabbing spree

Nouveaux riches and pollutants in new Chinese dictionary

Speaking in tongues: China divided over the common language




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.