Subscribe free to our newsletters via your
. Farming News .




ENERGY TECH
Could we one day control the path of lightning?
by Staff Writers
Quebec City, Canada (SPX) Jun 25, 2015


Electric arcs have long been used in such technologies as combustion engines, pollution control applications, lighting, machining and micromachining.

Lightning dart across the sky in a flash. And even though we can use lightning rods to increase the probability of it striking at a specific location, its exact path remains unpredictable. At a smaller scale, discharges between two electrodes behave in the same manner, streaking through space to create electric arcs where only the start and end points are fixed.

How then can we control the current so that it follows a predetermined path? Professor Roberto Morandotti and his colleagues have discovered a way to guide electric discharges--and even steer them around obstacles--through the clever use of lasers. This scientific breakthrough was published in Science Advances, the new open-access journal from the prestigious editors of the international journal Science.

Using the Advanced Laser Light Source (ALLS) facility, researchers from the INRS Energie Materiaux Telecommunications research centre tackled this challenge, which had previously been the subject of intensive research, particularly in the 1970s.

Electric arcs have long been used in such technologies as combustion engines, pollution control applications, lighting, machining and micromachining. Potential applications could multiply with the ability to precisely control the path they take. A first step in this direction has been made and research into the new possibilities and parameters for guiding electric arcs promises to spark researchers' creativity.

Recent scientific and technical advances, as well as the ingenuity of Professor Morandotti's team (particularly researcher Matteo Clerici, a postdoctoral fellow with the research group at the time of the experiments), set the stage for this spectacular demonstration, where we see an electric charge follow a smooth path along a straight or parabolic trajectory.

Experimental figures show how different shaped lasers give discharges distinct properties and trajectories. By combining beams, it is even possible to achieve an S-shaped trajectory, with all other kinds of trajectory achievable in principle.

In his bold quest for knowledge, Professor Morandotti wanted to determine whether the self-healing properties of certain shapes of laser beams (such as Airy and Bessel beams) could be put to use in these new experiments.

This attribute means that a laser beam whose intensity peak is blocked by an obstacle can reconstruct itself once past the object. Professor Morandotti's team placed an object between the two electrodes and observed that the discharge leapt over the obstacle, without damaging it, and returned to its laser guide on the other side.

"Our fascination with lightning and electric arcs aside, this scientific discovery holds out significant potential and opens up new fields of research," said Yves Begin, vice dean of research and academic affairs at INRS.

"This spectacular proof of concept, which was conducted over a distance of a few centimetres, required the high-power lasers, state-of-the-art facilities, and extraordinary research environment that our professors helped to create at INRS. Being able to work in such cutting-edge labs enables our students and postdoctoral fellows to embark on the path of scientific discovery even while still in school."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institut national de la recherche scientifique - INRS
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Unravelling the mysteries of carbonic acid
Berkeley CA (SPX) Jun 22, 2015
Blink your eyes and it's long gone. Carbonic acid exists for only a tiny fraction of a second when carbon dioxide gas dissolves in water before changing into a mix of protons and bicarbonate anions. Despite its short life, however, carbonic acid imparts a lasting impact on Earth's atmosphere and geology, as well as on the human body. However, because of its short lifespan, the detailed che ... read more


ENERGY TECH
EOMAP provides shallow water bathymetry for the South China Sea

New calculations to improve CO2 monitoring from space

BlackSky Global reveals plan to image Earth in near real-time

NASA Releases Detailed Global Climate Change Projections

ENERGY TECH
Russia Begins Mass Production of Glonass-K1 Navigation Satellites

Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

GLONASS to Go on Stream in 2015

Satellites make a load of difference to bridge safety

ENERGY TECH
A contentious quest for Kevazingo, Gabon's sacred tree

Changing climate prompts boreal forest shift

Predicting tree mortality

When trees aren't 'green'

ENERGY TECH
Elucidation of chemical ingredients in rice straw

Better switchgrass, better biofuel

Mold unlocks new route to biofuels

A new method of converting algal oil to transportation fuels

ENERGY TECH
Solar Impulse Japan take off cancelled

Countryside Renewables to Build 5 MW Solar Project

GNB Presents Energy Storage Products at Intersolar

Cathay LA Cashes In On LADWP Solar Feed in Tariff

ENERGY TECH
London to end subsidies for onshore wind

Wales opens mega offshore wind farm

Victoria open for clean energy business after wind farm changes

Keeping energy clean and the countryside quiet

ENERGY TECH
Top China coal executive under investigation: firm

Norway blazes trail by pulling huge sovereign fund out of coal

Coal in the crosshairs in Europe but fuelling emerging markets

Merkel under pressure on coal ahead of G7 climate push

ENERGY TECH
China anti-discrimination group protests 'arrest' of staff

China 'Hogwarts' students embrace ancient tradition at graduation

China's Panchen Lama meets Xi, calls for 'national unity'

How the mighty are fallen: selfies and smiles in Zhou village




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.