Subscribe free to our newsletters via your
. Farming News .




IRON AND ICE
Death of a dynamo -- A hard drive from space
by Staff Writers
Cambridge, UK (SPX) Jan 22, 2015


File image.

The dying moments of an asteroid's magnetic field have been successfully captured by researchers, in a study that offers a tantalising glimpse of what may happen to the Earth's magnetic core billions of years from now.

Using a detailed imaging technique, the research team were able to read the magnetic memory contained in ancient meteorites, formed in the early solar system over 4.5 billion years ago. The readings taken from these tiny 'space magnets' may give a sneak preview of the fate of the Earth's magnetic core as it continues to freeze. The findings are published in the journal Nature.

Using an intense beam of x-rays to image the nanoscale magnetisation of the meteoritic metal, researchers led by the University of Cambridge were able to capture the precise moment when the core of the meteorite's parent asteroid froze, killing its magnetic field. These 'nano-paleomagnetic' measurements, the highest-resolution paleomagnetic measurements ever made, were performed at the BESSY II synchrotron in Berlin.

The researchers found that the magnetic fields generated by asteroids were much longer-lived than previously thought, lasting for as long as several hundred million years after the asteroid formed, and were created by a similar mechanism to the one that generates the Earth's own magnetic field. The results help to answer many of the questions surrounding the longevity and stability of magnetic activity on small bodies, such as asteroids and moons.

"Observing magnetic fields is one of the few ways we can peek inside a planet," said Dr Richard Harrison of Cambridge's Department of Earth Sciences, who led the research.

"It's long been assumed that metal-rich meteorites have poor magnetic memories, since they are primarily composed of iron, which has a terrible memory - you wouldn't ever make a hard drive out of iron, for instance. It was thought that the magnetic signals carried by metal-rich meteorites would have been written and rewritten many times during their lifetime, so no-one has ever bothered to study their magnetic properties in any detail."

The particular meteorites used for this study are known as pallasites, which are primarily composed of iron and nickel, studded with gem-quality silicate crystals. Contained within these unassuming chunks of iron however, are tiny particles just 100 nanometres across - about one thousandth the width of a human hair - of a unique magnetic mineral called tetrataenite, which is magnetically much more stable than the rest of the meteorite, and holds within it a magnetic memory going back billions of years.

"We're taking ancient magnetic field measurements in nanoscale materials to the highest ever resolution in order to piece together the magnetic history of asteroids - it's like a cosmic archaeological mission," said PhD student James Bryson, the paper's lead author.

The researchers' magnetic measurements, supported by computer simulations, demonstrate that the magnetic fields of these asteroids were created by compositional, rather than thermal, convection - meaning that the field was long-lasting, intense and widespread. The results change our perspective on the way magnetic fields were generated during the early life of the solar system.

These meteorites came from asteroids formed in the first few million years after the formation of the Solar System. At that time, planetary bodies were heated by radioactive decay to temperatures hot enough to cause them to melt and segregate into a liquid metal core surrounded by a rocky mantle.

As their cores cooled and began to freeze, the swirling motions of liquid metal, driven by the expulsion of sulphur from the growing inner core, generated a magnetic field, just as the Earth does today.

"It's funny that we study other bodies in order to learn more about the Earth," said Bryson. "Since asteroids are much smaller than the Earth, they cooled much more quickly, so these processes occur on shorter timescales, enabling us to study the whole process of core solidification."

Scientists now think that the Earth's core only began to freeze relatively recently in geological terms, maybe less than a billion years ago. How this freezing has affected the Earth's magnetic field is not known. "In our meteorites we've been able to capture both the beginning and the end of core freezing, which will help us understand how these processes affected the Earth in the past and provide a possible glimpse of what might happen in the future," said Harrison.

However, the Earth's core is freezing rather slowly. The solid inner core is getting bigger, and eventually the liquid outer core will disappear, killing the Earth's magnetic field, which protects us from the Sun's radiation. "There's no need to panic just yet, however," said Harrison. "The core won't completely freeze for billions of years, and chances are, the Sun will get us first."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
Dawn Delivers New Image of Ceres
Pasadena CA (JPL) Jan 20, 2015
As NASA's Dawn spacecraft closes in on Ceres, new images show the dwarf planet at 27 pixels across, about three times better than the calibration images taken in early December. These are the first in a series of images that will be taken for navigation purposes during the approach to Ceres. Over the next several weeks, Dawn will deliver increasingly better and better images of the dwarf p ... read more


IRON AND ICE
SPIDER Experiment Touches Down in Antarctica

Subglacial Lakes Seen Refilling in Greenland

Airbus Defence and Space, TerraNIS and ARTAL Technologies join forces

All instruments for GOES-R now integrated with spacecraft

IRON AND ICE
Turtles use unique magnetic compass to find birth beach

W3C and OGC to Collaborate to Integrate Spatial Data on the Web

AirAsia disappearance fuels calls for real-time tracking

Four Galileo satellites at ESA test centre

IRON AND ICE
China confirms 155 detained in Myanmar for illegal logging

Warmer, drier climate altering forests throughout California

Warming climate may change the composition of northern forests

New restoration focus for western dry forests

IRON AND ICE
Study yields surprising insights into the effects of wood fuel burning

Boeing, Embraer team for aviation biofuel

Algae.Tec Signs Agreement for Entry into Greater China

EPA wants cleaner wood-burning fires, new rules expected by February

IRON AND ICE
US panel clears way for duties on Chinese solar products

UAE says falling oil prices will not impact clean energy

Oil-price slows diffusion of solar-diesel-hybrid systems in the mining industry

PROINSO supplies in Barbados a PV-DIESEL hybrid system

IRON AND ICE
150-MW Briscoe wind project fully funded

Dulas to acquire fleet of ZephIR Lidars for rental to UK wind market

Offshore wind would boost jobs, energy more than oil: study

ConEd Development acquires wind farm on South Dakota ranch

IRON AND ICE
China utilizing coal mine emissions for power

China coal mine explosion kills 11: Xinhua

Coal mine fire kills 26 in China: Xinhua

IRON AND ICE
China has mountain to climb with 2022 Winter Olympics bid

China anti-terror law may 'inflict grave harm': rights group

China workers decline as demographic time bomb ticks

China mourners mark Zhao anniversary under tight watch




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.