![]() |
Liverpool, UK (SPX) Sep 02, 2010 Wheat production world-wide is under threat from climate change and an increase in demand from a growing human population. Liverpool scientists, in collaboration with the University of Bristol and the John Innes Centre, have sequenced the entire wheat genome and will make the DNA data available to crop breeders to help them select key agricultural traits for breeding. Bread wheat, with an estimated world harvest of more than 550 million tonnes, is one of the most important food crops in the world and is worth more than Pounds 2 billion to the UK's agricultural industry. Wheat breeders, however, have few genetic tools to help them select key agricultural traits for breeding and do not always know the genes responsible for the trait they need. Scientists have analysed the wheat genome, which is five times larger than the human genome, to give breeders the tools required to select traits for a healthy yield. Professor Neil Hall, from the Institute of Integrative Biology, explains: "Sequencing the human genome took 15 years to complete, but with huge advances in DNA technology, the wheat genome took only a year. The information we have collected will be invaluable in tackling the problem of global food shortage. We are now working to analyse the sequence to highlight natural genetic variation between wheat types, which will help significantly speed up current breeding programmes." The project, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), was undertaken at the University's Centre for Genomic Research. The facility is home to five next generation genome analysers, which can read DNA hundreds of times faster than the systems that were used to sequence the human genome. Dr Anthony Hall added: "Wheat production is already under pressure with failures in the Russian harvest driving up world wheat prices. It is predicted that within the next 40 years world food production will need to be increased by 50 per cent. Developing new, low input, high yielding varieties of wheat, will be fundamental to meeting these goals. Using this new DNA data we will identify variation in gene networks involved in important agricultural traits such as disease resistance, drought tolerance and yield." Professor Keith Edwards, from the University of Bristol, said: "In a short space of time we have delivered most of the sequences necessary for plant breeders to identify genetic differences in wheat. The public release of the data will dramatically increase the efficiency of breeding new crop varieties."
Share This Article With Planet Earth
Related Links University of Liverpool Farming Today - Suppliers and Technology
More CO2 means more poison ivyWashington (UPI) Sep 1, 2010 Rising carbon dioxide in the atmosphere may threaten climate change and be bad news for humans but poison ivy likes it, U.S. researchers say. A report in the journal Environmental Health Perspectives last year said the amount of CO2 in the atmosphere has grown by 22 percent since 1960, not so good for humans but great for poison ivy and other vines, The Washington Post reported Tuesday. ... read more |
|
| The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |