Energy News  
TIME AND SPACE
Discovery for grouping atoms invokes Pasteur
by Staff Writers
Sydney, Australia (SPX) Jun 22, 2018

The researchers' molecules change shape by the central oxygen atom (shown in red) bending like a hinge. The left and right images show what the shapes of these molecules are when stable. If heated up, they transform into each other via a shape shown in the centre image.

Scientists have found a new way of joining groups of atoms together into shape-changing molecules - opening up the possibility of a new area of chemistry and the development of countless new drugs, microelectronics and materials with novel characteristics.

Discoveries of new ways to make isomers - molecules made of the same atoms connected together differently - were last reported in 1961 and before then in 1914.

The discovery of another form of isomerism means a whole new range of materials could be prepared, either with the same functions as existing one, or with properties currently out of reach.

As well as new types of drugs, other potential real-world applications include new materials that can be manipulated to be "switched on or off", polymers with special performance characteristics and possibly new molecular information storage devices.

The paper was led by University of Sydney PhD candidate Peter Canfield, working closely with his supervisors Professor Maxwell Crossley, a synthetic organic chemist at the University of Sydney, and Professor Jeffrey Reimers, a theoretical chemist from The University of Technology Sydney (UTS) and Shanghai University.

Mr Canfield, who is undertaking his PhD in Sydney's School of Chemistry, said he was excited by the possibilities of what might be achieved stemming from the findings and the team was pursuing commercial applications.

"Proof-of-principle and prototype demonstration could be as early as 30 months or less," Mr Canfield said.

Professor Crossley said: "When you have a new discovery like this, there will be important applications but exactly how and when is not always anticipated at the time."

Professor Reimers said: "Our team's advance sits at the same level of understanding as Louis Pasteur's discovery of chirality - a central feature of most modern molecular science."

Professor Reimers said the mathematics of geometry describes the fundamental ways in which atoms could be combined and hence all possible types of isomers.

"When we looked at this, we noticed a fundamental form which had never been made before," he said.

The team used nanoscale porphyrin scaffolds developed by Professor Crossley to "host" boron "guest" molecules, resulting in isolable compounds - molecules stable in a bottle at room temperature.

Professor Crossley explains: "Porphyrins are very widely used by nature and by designers to grab and transport molecules and energy - we demonstrate new ways of binding guests to make this happen."

State-of-the-art spectroscopy and computational modelling at the National Computational Infrastructure in collaboration with researchers at the Australian National University gave the team confirmation that what they'd synthesised was new.

Professor Reimers concludes: "Now that it is known that isolable isomers can be made in this way, the possibilities of what chemists could make are endless."

The findings are published in Nature Chemistry.

Research paper


Related Links
University of Sydney
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Turning entanglement upside down
Innsbruck, Austria (SPX) Jun 19, 2018
Quantum entanglement forms the heart of the second quantum revolution: it is a key characteristic used to understand forms of quantum matter, and a key resource for present and future quantum technologies. Physically, entangled particles cannot be described as individual particles with defined states, but only as a single system. Even when the particles are separated by a large distance, changes in one particle also instantaneously affect the other particle(s). The entanglement of individual parti ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New method makes weather forecasts right as rain

UCI scientists find new teleconnection for early and accurate precipitation prediction

Thailand to buy Airbus satellite as junta chief visits France

MOF material offers selective, reversible and repeatable capture of toxic atmospheric gas

TIME AND SPACE
China's Beidou system helps livestock water supply in remote pastoral areas

UK says shut out of EU's Galileo sat-nav contracts

Woman drowns in Prague drains playing GPS treasure hunt

What exclusion from Galileo could mean for UK

TIME AND SPACE
'Shocking' die-off of Africa's oldest baobabs

New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery

TIME AND SPACE
Orange, tea tree and eucalyptus oils sweeten diesel fumes

Critical plant gene takes unexpected detour that could boost biofuel yields

'Tricking' bacteria into hydroxylating benzene

How to suck carbon dioxide from the sky for fuels and more

TIME AND SPACE
KYOCERA to participate in Japan's virtual power plant project to improve energy management

New material for splitting water

ABB to install multipurpose microgrid in Australia

Solar FlexRack completes shipments to 71 MW solar project in North Carolina

TIME AND SPACE
India embarks on offshore wind energy effort

New wind turbines are even efficient in low winds

Cryptocurrency blowing in the wind as mine opens in Estonia

U.S. Atlantic states eye offshore wind leadership

TIME AND SPACE
Rescuers save 23 workers trapped in China mine, 11 others dead

Dutch to close two oldest coal-fired plants by 2025

U.S. wants input on coal plants of the future

Two Polish miners killed, three missing after quake

TIME AND SPACE
China pledges $100 million in military aid to Cambodia

Chinese parents-to-be seek more fertile ground abroad

Nepal PM to seek investment on first official China trip

Malaysia power shift hits China infrastructure drive









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.