Energy News  
CHIP TECH
Discovery paves way for improved quantum devices
by Staff Writers
Brisbane, Australia (SPX) Sep 02, 2021

Schematic of a superconducting circuit being imaged using terahertz scanning near-field microscopy.

Physicists and engineers have found a way to identify and address imperfections in materials for one of the most promising technologies in commercial quantum computing.

The University of Queensland team was able to develop treatments and optimise fabrication protocols in common techniques for building superconducting circuits on silicon chips.

Dr Peter Jacobson, who co-led the research, said the team had identified that imperfections introduced during fabrication reduced the effectiveness of the circuits.

"Superconducting quantum circuits are attracting interest from industry giants such as Google and IBM, but widespread application is hindered by 'decoherence', a phenomenon which causes information to be lost," he said.

"Decoherence is primarily due to interactions between the superconducting circuit and the silicon chip - a physics problem - and to material imperfections introduced during fabrication - an engineering problem.

"So we needed input from physicists and engineers to find a solution."

The team used a method called terahertz scanning near-field optical microscopy (THz SNOM) - an atomic force microscope combined with a THz light source and detector.

This provided a combination of high spatial resolution - seeing down to the size of viruses - and local spectroscopic measurements.

Professor Aleksandar Rakic said the technique enabled probing at the nanoscale rather than the macroscale by focusing light onto a metallic tip.

"This provides new access for us to understand where imperfections are located so we can reduce decoherence and help reduce losses in superconducting quantum devices," Professor Rakic said.

"We found that commonly used fabrication recipes unintentionally introduce imperfections into the silicon chips, which contribute to decoherence.

"And we also showed that surface treatments reduce these imperfections, which in turn reduces losses in the superconducting quantum circuits."

Associate Professor Arkady Fedorov said this allowed the team to determine where in the process defects were introduced and optimise fabrication protocols to address them.

"Our method allows the same device to be probed multiple times, in contrast to other methods that often require the devices to be cut up before being probed," Dr Fedorov said.

"The team's results provide a path towards improving superconducting devices for use in quantum computing applications."

In future, THz SNOM could be used to define new ways to improve the operation of quantum devices and their integration into a viable quantum computer.

Research Report: "Near-field terahertz nanoscopy of coplanar microwave resonators"


Related Links
University Of Queensland
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Berkeley and Caltech team up to build quantum network testbed
Berkeley CA (SPX) Sep 02, 2021
Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley (UC Berkeley) will be home to a cutting-edge quantum network testbed, thanks to a new five-year, $12.5 million funding award from the U.S. Department of Energy (DOE). Led by personnel from Berkeley Lab's Scientific Networking Division/ESnet, UC Berkeley, and Caltech, the R and D collaboration will also leverage quantum development efforts at Berkeley Lab and beyond. The goal is to build a distributed qu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Satellite observes power outages in New Orleans

Ball Aerospace selected for two Landsat next studies

Precipitation in central Asia shaped by sea surface temperature over tropical pacific and north Atlantic

On the trail of methane sources in Scandinavia

CHIP TECH
Space Systems Command declares three GPS III space vehicles "Available for Launch"

Virginia company licenses NASA relative navigation technology

2nd SOPS accepts new GPS satellite

GMV develops a new maritime Galileo receiver

CHIP TECH
'Virtuous cycle': Putting a price on CO2 in Gabon's forests

Conservation meet mulls plan to protect 80% of Amazon

Deadwood in the global carbon cycle

A third of global tree species threatened with extinction

CHIP TECH
UMD to create sustainable biofuels and bioplastics from food waste with DOE grant

Zeolites make for efficient production of pentanoic biofuels

Marginal land available for bioenergy crops much scarcer than previously estimated

Bacteria may hold key for energy storage, biofuels

CHIP TECH
WTO rules for US in Chinese solar tariff dispute

High-efficiency perovskite tandem solar cells using cross-linked layers

North African sun offers green hope but state role key

Sandia uncovers hidden factors that affect solar farms during severe weather

CHIP TECH
How do wind turbines respond to winds, ground motion during earthquakes?

For golden eagles, habitat loss is main threat from wind farms

Wind turbines can be clustered while avoiding turbulent wakes of their neighbors

Shell, France's EDF to build US offshore windfarm

CHIP TECH
Why China is struggling to wean itself from coal

China's coal binge could 'undo' global capacity to meet climate targets

Rescuers rush to free 19 trapped miners in NW China

Climate report must be 'death knell' for fossil fuels: UN chief

CHIP TECH
China bans reality talent shows in showbiz crackdown

China's mentally ill yearn to step from the shadows

China's kids get schooled in 'Xi Jinping thought'

Hong Kong University labour researcher detained in China: friends









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.