. Energy News .




NANO TECH
Drawing a line, with carbon nanotubes
by Anne Trafton for MIT News
Boston MA (SPX) Oct 10, 2012

illustration only

Carbon nanotubes offer a powerful new way to detect harmful gases in the environment. However, the methods typically used to build carbon nanotube sensors are hazardous and not suited for large-scale production.

A new fabrication method created by MIT chemists - as simple as drawing a line on a sheet of paper - may overcome that obstacle. MIT postdoc Katherine Mirica has designed a new type of pencil lead in which graphite is replaced with a compressed powder of carbon nanotubes. The lead, which can be used with a regular mechanical pencil, can inscribe sensors on any paper surface.

The sensor, described in the journal Angewandte Chemie, detects minute amounts of ammonia gas, an industrial hazard. Timothy Swager, the John D. MacArthur Professor of Chemistry and leader of the research team, says the sensors could be adapted to detect nearly any type of gas.

"The beauty of this is we can start doing all sorts of chemically specific functionalized materials," Swager says. "We think we can make sensors for almost anything that's volatile."

Other authors of the paper are graduate student Jonathan Weis and postdocs Jan Schnorr and Birgit Esser.

Pencil it in
Carbon nanotubes are sheets of carbon atoms rolled into cylinders that allow electrons to flow without hindrance. Such materials have been shown to be effective sensors for many gases, which bind to the nanotubes and impede electron flow. However, creating these sensors requires dissolving nanotubes in a solvent such as dichlorobenzene, using a process that can be hazardous and unreliable.

Swager and Mirica set out to create a solvent-free fabrication method based on paper. Inspired by pencils on her desk, Mirica had the idea to compress carbon nanotubes into a graphite-like material that could substitute for pencil lead.

To create sensors using their pencil, the researchers draw a line of carbon nanotubes on a sheet of paper imprinted with small electrodes made of gold. They then apply an electrical current and measure the current as it flows through the carbon nanotube strip, which acts as a resistor. If the current is altered, it means gas has bound to the carbon nanotubes. The researchers tested their device on several different types of paper, and found that the best response came with sensors drawn on smoother papers. They also found that the sensors give consistent results even when the marks aren't uniform.

Two major advantages of the technique are that it is inexpensive and the "pencil lead" is extremely stable, Swager says. "You can't imagine a more stable formulation. The molecules are immobilized," he says.

The new sensor could prove useful for a variety of applications, says Zhenan Bao, an associate professor of chemical engineering at Stanford University. "I can already think of many ways this technique can be extended to build carbon nanotube devices," says Bao, who was not part of the research team. "Compared to other typical techniques, such as spin coating, dip coating or inkjet printing, I am impressed with the good reproducibility of sensing response they were able to get."

Sensors for any gas
In this study, the researchers focused on pure carbon nanotubes, but they are now working on tailoring the sensors to detect a wide range of gases. Selectivity can be altered by adding metal atoms to the nanotube walls, or by wrapping polymers or other materials around the tubes.

One gas the researchers are particularly interested in is ethylene, which would be useful for monitoring the ripeness of fruit as it is shipped and stored. The team is also pursuing sensors for sulfur compounds, which might prove helpful for detecting natural gas leaks.

The research was funded by the Army Research Office through MIT's Institute for Soldier Nanotechnologies and a National Institutes of Health fellowship to Mirica.

Related Links
MIT
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Nano-hillocks: Of mountains and craters
Dresden, Germany (SPX) Oct 05, 2012
In the field of nanotechnology, electrically-charged particles are frequently used as tools for surface modification. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the TU Vienna were at last able to reconcile important issues concerning the effects of highly charged ions on surfaces. Ion beams have been used for some time now for surface modification as ions are capabl ... read more


NANO TECH
SMOS has a better look at salinity

Digital Map Products to Discuss the New Rules for Communicating with Residents

Apple CEO sorry for maps shortcomings

Landslide mapping in the Swiss Alps

NANO TECH
City of Fayetteville Implements an All-in-One Fleet and Transit Management Solution

ATK Propulsion, Composite and Spacecraft Technologies Help Launch GPS IIF-3 Satellite

MundoGEO goes to Germany to participate in Intergeo

Boeing Modernizes GPS Network with 3rd GPS IIF Satellite

NANO TECH
Northern conifers youngest of the species

Climate change cripples forests

Semi-dwarf trees may enable a green revolution for some forest crop

Rangers losing battle in Philippine forests

NANO TECH
Computational Model IDs Potential Pathways to Improve Plant Oil Production

Biorefining: The new green wave

Turd-eating worms clear air around Canadian toilets

Napiergrass: A Potential Biofuel Crop for the Sunny Southeast

NANO TECH
China's solar slump to strengthen sector?

Researchers Reveal How Solvent Mixtures Affect Organic Solar Cell Structure

Eclipsall Solar PV Panels Featured in Veridian Headquarters Rooftop Solar Array

Optimism Sets Tone As Solar Power International Makes First Visit to Southeast

NANO TECH
Sandia Labs benchmark helps wind industry measure success

Bigger wind turbines make greener electricity

EU wind power capacity reaches 100GW

Lawsuit fights Obama ban on wind farm sale to Chinese

NANO TECH
Australian coal projects mega polluters?

Australian coal basin may be top 10 polluter: Greenpeace

Coal mining jobs slashed in Australia

China mine accident kills 10

NANO TECH
China vows graft fight in wake of Bo case

Calls to free China activist Liu two years

Bo's son 'suspected in plot to poison wife': report

Chinese actress sues US website over Bo link claims


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement