![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Los Alamos NM (SPX) Nov 26, 2019
Extreme drought's impact on plants will become more dominant under future climate change, as noted in a paper out in the journal Nature Climate Change. Analysis shows that not only will droughts become more frequent under future climates, but more of those events will be extreme, adding to the reduction of plant production essential to human and animal populations. "Even though plants can, in many cases, benefit from increased levels of carbon dioxide that are predicted for the future atmosphere, the impact of severe drought on destroying these plants will be extreme, especially in the Amazon, South Africa, Mediterranean, Australia, and southwest USA," said lead study author Chonggang Xu of Los Alamos National Laboratory. Future drought events are typically associated with low humidity, low precipitation, high temperature, and changes in carbon released from fire disturbances. The frequency of extreme droughts (defined by low plant-accessible soil water) per year is predicted to increase by a factor of ~3.8 under a high greenhouse-gas emission scenario and by a factor of ~3.1 under an intermediate greenhouse-gas emission scenario during 2075-2099, compared to the historical period of 1850-1999. Drought is already the most widespread factor affecting plant production via direct physiological impacts such as water limitation and heat stress. But indirectly it also can have devastating effect, through increased frequency and intensity of disturbances such as fire and insect outbreaks that release large amounts of carbon back into the atmosphere. Plants fix carbon dioxide into an ecosystem through photosynthesis, and this process plays a key role in the net carbon balance of the terrestrial biosphere that contributed to its regulation of atmospheric carbon dioxide. And even though higher carbon dioxide concentrations in future decades can help increase plant production, the combination of low soil water availability, heat stress, and disturbances associated with droughts could negate the benefits of such fertilization. "Future plant production under elevated carbon dioxide levels remains highly uncertain despite our knowledge on carbon dioxide fertilization effects on plant productivity," Xu said. The research team analyzed the outputs from 13 Earth System Models (ESMs) and the results show that due to a dramatic increase in the frequency of extreme droughts, the magnitude of globally-averaged reductions in plant production will be nearly tripled by the last quarter of this century relative to that of the study's historical period (1850-1999). For plants living through mild or moderate droughts, the situation is not as dire. The problem is that more of the droughts that come will be the extreme ones. "Our analysis indicates a high risk of increasing impacts of extreme droughts on the global carbon cycle with atmospheric warming," Xu said, "At the same time though, this drought risk will be potentially mitigated by positive anomalies of plant production associated with favorable environmental conditions."
Research Report: Increasing Impacts of Extreme Droughts on Vegetation Production Under Future Climate Change
![]() ![]() Monsanto pleads guilty to using banned pesticide on research crop Los Angeles (AFP) Nov 22, 2019 Biotech giant Monsanto on Thursday agreed to plead guilty to illegally using a banned and highly toxic pesticide on research crops at one of its facilities on the Hawaiian island of Maui and to pay $10 million in fines. The company admitted in court documents filed in US District Court in Honolulu that it sprayed the pesticide known as Penncap-M on corn seed and other crops at its Valley Farm facility in 2014, even though it knew the chemical had been banned by the Environmental Protection Agency th ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |