Energy News  
Dusty Shock Waves Generate Planet Ingredients

NASA's Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite, can be seen close-up in the black-and-white insets (cristobalite is on the left, and tridymite on the right). The main picture is an artist's concept of a young star and its swirling disk of planet-forming materials.

Cristobalite and tridymite are thought to be two of many planet ingredients. On Earth, they are normally found as tiny crystals in volcanic lava flows and meteorites from space. These minerals are both related to quartz. For example, if you were to heat the familiar quartz crystals often sold as mystical tokens, the quartz would transform into cristobalite and tridymite. Because cristobalite and tridymite require rapid heating and cooling to form, astronomers say they were most likely generated by shock waves traveling through the planetary disks. The insets are Scanning Electron Microscope pictures courtesy of George Rossman of the California Institute of Technology, Pasadena, Calif. Image credit: NASA/JPL-CaltechSpitzer

by Staff Writers
Pasadena CA (SPX) Nov 12, 2008
Shock waves around dusty, young stars might be creating the raw materials for planets, according to new observations from NASA's Spitzer Space Telescope.

The evidence comes in the form of tiny crystals. Spitzer detected crystals similar in make-up to quartz around young stars just beginning to form planets. The crystals, called cristobalite and tridymite, are known to reside in comets, in volcanic lava flows on Earth, and in some meteorites that land on Earth.

Astronomers already knew that crystallized dust grains stick together to form larger particles, which later lump together to form planets. But they were surprised to find cristobalite and tridymite. What's so special about these particular crystals? They require flash heating events, such as shock waves, to form.

The findings suggest that the same kinds of shock waves that cause sonic booms from speeding jets are responsible for creating the stuff of planets throughout the universe.

"By studying these other star systems, we can learn about the very beginnings of our own planets 4.6 billion years ago," said William Forrest of the University of Rochester, N.Y. "Spitzer has given us a better idea of how the raw materials of planets are produced very early on." Forrest and University of Rochester graduate student Ben Sargent led the research, to appear in the Astrophysical Journal.

Planets are born out of swirling pancake-like disks of dust and gas that surround young stars. They start out as mere grains of dust swimming around in a disk of gas and dust, before lumping together to form full-fledged planets. During the early stages of planet development, the dust grains crystallize and adhere together, while the disk itself starts to settle and flatten. This occurs in the first millions of years of a star's life.

When Forrest and his colleagues used Spitzer to examine five young planet-forming disks about 400 light-years away, they detected the signature of silica crystals. Silica is made of only silicon and oxygen and is the main ingredient in glass. When melted and crystallized, it can make the large hexagonal quartz crystals often sold as mystical tokens. When heated to even higher temperatures, it can also form small crystals like those commonly found around volcanoes.

It is this high-temperature form of silica crystals, specifically cristobalite and tridymite, that Forrest's team found in planet-forming disks around other stars for the first time. "Cristobalite and tridymite are essentially high-temperature forms of quartz," said Sargent. "If you heat quartz crystals, you'll get these compounds."

In fact, the crystals require temperatures as high as 1,220 Kelvin (about 1,740 degrees Fahrenheit) to form. But young planet-forming disks are only about 100 to 1,000 Kelvin (about minus 280 degrees Fahrenheit to 1,340 Fahrenheit) -- too cold to make the crystals. Because the crystals require heating followed by rapid cooling to form, astronomers theorized that shock waves could be the cause.

Shock waves, or supersonic waves of pressure, are thought to be created in planet-forming disks when clouds of gas swirling around at high speeds collide. Some theorists think that shock waves might also accompany the formation of giant planets.

The findings are in agreement with local evidence from our own solar system. Spherical pebbles, called chondrules, found in ancient meteorites that fell to Earth are also thought to have been crystallized by shock waves in our solar system's young planet-forming disk. In addition, NASA's Stardust mission found tridymite minerals in comet Wild 2.

Other authors of the paper include C. Tayrien, M.K. McClure, A.R. Basu, P. Mano, Dan Watson, C.J. Bohac, K.H. Kim and J.D. Green of the University of Rochester; A Li of the University of Missouri, Columbia; E. Furlan of NASA's Jet Propulsion Laboratory, Pasadena, Calif., and G.C. Sloan of Cornell University, Ithaca, N.Y. Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


MIT Researchers Find Clues To Planets' Birth
Cambridge MA (SPX) Oct 31, 2008
Meteorites that are among the oldest rocks ever found have provided new clues about the conditions that existed at the beginning of the solar system, solving a longstanding mystery and overturning some accepted ideas about the way planets form.







  • Future Fuels Creates Pennsylvania Clean Coal Project
  • Oil prices rise on hope China's stimulus will stoke demand
  • Southwall's Heat Mirror Insulating Glass
  • Fuels Of The Future May Come From Ice That Burns, Water And Sunshine

  • Britain lifts ban on civilian nuclear exports to India
  • IAEA inspectors at Bulgaria's Kozloduy plant for reactor checks
  • German riot police break up nuclear protest
  • Chavez boasts nuclear cooperation with Russia

  • Global Methane Levels On The Rise Again
  • Measuring The Weight Of Ancient Air
  • On Rocky Mountain Beetle Kill Could Impact Regional Air Quality
  • An Explanation For Night-Shining Clouds At The Edge Of Space

  • Brazil sees carbon market saving Amazon
  • Charles presents forest plan to Indonesian president
  • Living fossil Helps Predict Rainforest Future
  • Waste paper price collapses as Chinese factories reduce demand: reports

  • NKorea plan to ban hillside farms will increase hunger: aid group
  • Atlantic sharks at risk as fishing bites: study
  • Farm Aid Promoting Sustainable Farm And Food Vision
  • Pollinator Decline Not Reducing Crop Yields Just Yet

  • Fill her up please, and make it myco-diesel
  • EU nations agree to push back CO2 auto limits to 2015
  • Car-crazy Germany plans tax relief for 'green' automobiles
  • Road Test For Vehicle-To-Vehicle Communication

  • China's air show saw four bln dollars in deals: report
  • China plane-makers take first steps to rival global giants
  • Aviation giants look to China amid global turbulence
  • Boeing sees China buying 3,710 planes over next 20 years



  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement