Energy News  
STELLAR CHEMISTRY
Dying star emits a whisper
by Staff Writers
Pasadena CA (SPX) Oct 15, 2018

The three panels represent moments before, during, and after the faint supernova iPTF14gqr, visible in the middle panel, appeared in the outskirts of a spiral galaxy located 920 million light years away. The massive star that died in the supernova left behind a neutron star in a very tight binary system. These dense stellar remnants will ultimately spiral into each other and merge in a spectacular explosion, giving off gravitational and electromagnetic waves.

A Caltech-led team of researchers has observed the peculiar death of a massive star that exploded in a surprisingly faint and rapidly fading supernova. These observations suggest that the star has an unseen companion, gravitationally siphoning away the star's mass to leave behind a stripped star that exploded in a quick supernova.

The explosion is believed to have resulted in a dead neutron star orbiting around its dense and compact companion, suggesting that, for the first time, scientists have witnessed the birth of a compact neutron star binary system.

The research was led by graduate student Kishalay De and is described in a paper appearing in the October 12 issue of the journal Science. The work was done primarily in the laboratory of Mansi Kasliwal (MS '07, PhD '11), assistant professor of astronomy. Kasliwal is the principal investigator of the Caltech-led Global Relay of Observatories Watching Transients Happen (GROWTH) project.

When a massive star - at least eight times the mass of the sun - runs out of fuel to burn in its core, the core collapses inwards upon itself and then rebounds outward in a powerful explosion called a supernova. After the explosion, all of the star's outer layers have been blasted away, leaving behind a dense neutron star - about the size of a small city but containing more mass than the sun. A teaspoon of a neutron star would weigh as much as a mountain.

During a supernova, the dying star blasts away all of the material in its outer layers. Usually, this is a few times the mass of the sun. However, the event that Kasliwal and her colleagues observed, dubbed iPTF 14gqr, ejected matter only one fifth of the mass of the sun.

"We saw this massive star's core collapse, but we saw remarkably little mass ejected," Kasliwal says. "We call this an ultra-stripped envelope supernova and it has long been predicted that they exist. This is the first time we have convincingly seen core collapse of a massive star that is so devoid of matter."

The fact that the star exploded at all implies that it must have previously been enveloped in lots of material, or its core would never have become heavy enough to collapse. But where, then, was the missing mass?

The researchers inferred that the mass must have been stolen - the star must have some kind of dense, compact companion, either a white dwarf, neutron star, or black hole - close enough to gravitationally siphon away its mass before it exploded. The neutron star that was left behind from the supernova must have then been born into orbit with that dense companion.

Observing iPTF 14gqr was actually observing the birth of a compact neutron star binary. Because this new neutron star and its companion are so close together, they will eventually merge in a collision similar to the 2017 event that produced both gravitational waves and electromagnetic waves.

Not only is iPTF 14gqr a notable event, the fact that it was observed at all was fortuitous since these phenomena are both rare and short-lived. Indeed, it was only through the observations of the supernova's early phases that the researchers could deduce the explosion's origins as a massive star.

"You need fast transient surveys and a well-coordinated network of astronomers worldwide to really capture the early phase of a supernova," says De. "Without data in its infancy, we could not have concluded that the explosion must have originated in the collapsing core of a massive star with an envelope about 500 times the radius of the sun."

The event was first seen at Palomar Observatory as part of the intermediate Palomar Transient Factory (iPTF), a nightly survey of the sky to look for transient, or short-lived, cosmic events like supernovae.

Because the iPTF survey keeps such a close eye on the sky, iPTF 14gqr was observed in the very first hours after it had exploded. As the earth rotated and the Palomar telescope moved out of range, astronomers around the world collaborated to monitor iPTF 14gqr, continuously observing its evolution with a number of telescopes that today form the GROWTH network of observatories.

The Zwicky Transient Facility, the successor of iPTF at Palomar Observatory, is examining the sky even more broadly and frequently in the hopes of catching more of these rare events, which make up only one percent of all observed explosions. Such surveys, in partnership with coordinated follow-up networks like GROWTH, will enable astronomers to better understand how compact binary systems evolve from binary massive stars.

More at GROWTH


Related Links
California Institute of Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Massive star's unusual death heralds the birth of compact neutron star binary
Pasadena, CA (SPX) Oct 17, 2018
Carnegie's Anthony Piro was part of a Caltech-led team of astronomers who observed the peculiar death of a massive star that exploded in a surprisingly faint and rapidly fading supernova, possibly creating a compact neutron star binary system. Piro's theoretical work provided crucial context for the discovery. Their findings are published by Science. Observations made by the Caltech team - including lead author Kishalay De and project principal investigator Mansi Kasliwal (herself a former-Carnegi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
African smoke-cloud connection target of NASA airborne flights

After two long careers, QuikSCAT rings down the curtain

Innovative tool allows continental-scale water, energy, and land system modeling

China launches new remote sensing satellites

STELLAR CHEMISTRY
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

STELLAR CHEMISTRY
Forest carbon stocks have been overestimated for 50 years

Can forests save us from climate change?

Tracking the movement of the tropics 800 years into the past

EU forests can't help climate fight: study

STELLAR CHEMISTRY
New catalyst opens door to CO2 capture in conversion of coal to liquid fuels

Sebigas Awarded For The Construction Of The Biggest Biogas Plant In The Americas

In pre-vote boost for farmers, Trump to ease ethanol fuel rules

A biofuel for automated heat generation

STELLAR CHEMISTRY
New technique for turning sunshine and water into hydrogen fuel

Renewable energy is common ground for Democrats and Republicans

Efficiently turning light into electricity

SOVENTIX realises the largest solar project in Zimbabwe at 22 MWp

STELLAR CHEMISTRY
Ingeteam opens new high-tech production facility for electrical wind turbine components in India

Wind turbine installation vessel launching and construction supervision contract

UCSB mechanical engineer develops ways to improve windfarm productivity

Large-scale US wind power would cause warming that would take roughly a century to offset

STELLAR CHEMISTRY
Thousands join German forest demo after court reprieve

Weathering rates for mined lands exponentially higher than unmined sites

German police suspend anti-coal evictions after journalist dies

Japan's Marubeni to slash coal-fired power capacity

STELLAR CHEMISTRY
Chinese live-streamer held for 'insulting' national anthem

Ex-chief of China asset management firm prosecuted for graft

Thousands protest proposed artificial islands for Hong Kong housing

Ousted Hong Kong pro-democracy lawmaker barred from by-election









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.