. Energy News .




.
ENERGY TECH
Edible Carbon Dioxide Sponge
by Megan Fellman
Evanston, IL (SPX) Sep 30, 2011

When a yellow dye, called pH indicator, is placed within the voids of the metal-organic frameworks (MOFs), the crystals turn yellow. However, upon exposure to carbon dioxide, the pH indicator switches to a red color, indicating that the MOF has both reacted and filled up with carbon dioxide.

A year ago Northwestern University chemists published their recipe for a new class of nanostructures made of sugar, salt and alcohol. Now, the same team has discovered the edible compounds can efficiently detect, capture and store carbon dioxide. And the compounds themselves are carbon-neutral.

The porous crystals - known as metal-organic frameworks (MOFs) - are made from all-natural ingredients and are simple to prepare, giving them a huge advantage over other MOFs. Conventional MOFs, which also are effective at adsorbing carbon dioxide, are usually prepared from materials derived from crude oil and often incorporate toxic heavy metals.

Other features of the Northwestern MOFs are they turn red when completely full of carbon dioxide, and the carbon capture process is reversible.

The findings, made by scientists working in the laboratory of Sir Fraser Stoddart, Board of Trustees Professor of Chemistry in the Weinberg College of Arts and Sciences, are published in the Journal of the American Chemical Society (JACS).

"We are able to take molecules that are themselves sourced from atmospheric carbon, through photosynthesis, and use them to capture even more carbon dioxide," said Ross S. Forgan, a co-author of the study and a postdoctoral fellow in Stoddart's laboratory. "By preparing our MOFs from naturally derived ingredients, we are not only making materials that are entirely nontoxic, but we are also cutting down on the carbon dioxide emissions associated with their manufacture."

The main component, gamma-cyclodextrin, is a naturally occurring biorenewable sugar molecule that is derived from cornstarch.

The sugar molecules are held in place by metals taken from salts such as potassium benzoate or rubidium hydroxide, and it is the precise arrangement of the sugars in the crystals that is vital to their successful capture of carbon dioxide.

"It turns out that a fairly unexpected event occurs when you put that many sugars next to each other in an alkaline environment - they start reacting with carbon dioxide in a process akin to carbon fixation, which is how sugars are made in the first place," said Jeremiah J. Gassensmith, lead author of the paper and also a postdoctoral fellow in Stoddart's laboratory. "The reaction leads to the carbon dioxide being tightly bound inside the crystals, but we can still recover it at a later date very simply."

The fact that the carbon dioxide reacts with the MOF, an unusual occurrence, led to a simple method of detecting when the crystals have reached full capacity. The researchers place an indicator molecule, which detects changes in pH by changing its color, inside each crystal. When the yellow crystals of the MOFs are full of carbon dioxide they turn red.

The simplicity of the new MOFs, allied with their low cost and green credentials, have marked them as candidates for further commercialization. Ronald A. Smaldone, also a postdoctoral fellow in Stoddart's group and a co-author of the paper, added, "I think this is a remarkable demonstration of how simple chemistry can be successfully applied to relevant problems like carbon capture and sensor technology."

The National Science Foundation, the U.S. Department of Energy, the Engineering and Physical Sciences Research Council in the U.K., the King Abdulaziz City of Science and Technology (KACST) in Saudi Arabia and the Korea Advanced Institute of Science and Technology (KAIST) in Korea supported the research.

The title of the paper is "Strong and Reversible Binding of Carbon Dioxide in a Green Metal-Organic Framework." In addition to Stoddart, Gassensmith, Smaldone and Forgan, the other authors of the paper are Hiroyasu Furukawa and Omar M. Yaghi, from UCLA.

Related Links
Northwestern University
Powering The World in the 21st Century at Energy-Daily.com




 

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
Next-generation optical tweezers trap tightly without overheating
Boston MA (SPX) Sep 29, 2011
Engineers at Harvard have created a device that may make it easier to isolate and study tiny particles such as viruses. Their plasmonic nanotweezers, revealed this month in Nature Communications, use light from a laser to trap nanoscale particles. The new device creates strong forces more efficiently than traditional optical tweezers and eliminates a problem that caused earlier setups to overhea ... read more


ENERGY TECH
Nigerian satellite demonstrates stunning high resolution capability

Russia may launch its first Earth remote sensing satellite in 2012

Astrotech Subsidiary Wins Contract for NASA Mission

Japanese meteorological firm to launch satellite to track Arctic sea ice

ENERGY TECH
Ruling Fuels Debate On Warrantless Cell Phone Tracking

Raytheon GPS OCX Completes Preliminary Design Review

Hexagon Enhances Satellite-based Positioning Solutions with Locata Local Constellation

Locata Publishes Interface Specifications and Launches New Local Constellation Concept

ENERGY TECH
US, Indonesia sign $30m debt-for-nature swap

Indonesia pledges forest conservation

Publication offers tree-planting tips

Bolivian minister resigns over Amazon crackdown

ENERGY TECH
Iowa State researchers produce cheap sugars for sustainable biofuel production

JBEI identify new advanced biofuel as an alternative to diesel fuel

Motor fuel from wood and water?

Researchers sequence dark matter of life

ENERGY TECH
Cheap and efficient solar cell made possible by linked nanoparticles

Lessons to be Learned from Nature in Photosynthesis

Copper Film Could Lower Touch Screen, LED and Solar Cell Costs

Nature offers key lessons on harvesting solar power

ENERGY TECH
Natural Power deploys first dual-mode ZephIR wind lidar in India

New energy in search for future wind

Investment blows into India's wind sector

Spain's Gamesa signs deal with Chinese firm

ENERGY TECH
Concern as China firm to buy Australian coal mine

India acquires Australian coal assets

China, India buy up Australian coal field

Mongolia rejects major coal mine deal

ENERGY TECH
Chinese city hikes taxi fares after strike

S.Africa Dalai Lama ban will be bow to China: rights group

China critic fears 'thousands' will vanish under new law

US urges China to respect Tibetans' rights


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement