Energy News  
WATER WORLD
Efficiency of water electrolysis doubled
by Staff Writers
Bochum, Germany (SPX) Mar 15, 2016


Together with his team, Wolfgang Schuhmann develops new electrodes, for instance for producing hydrogen. Image courtesy RUB and Kramer. For a larger version of this image please go here.

Water electrolysis has not yet established itself as a method for the production of hydrogen. Too much energy is lost in the process. Researchers have now doubled the efficiency of the reaction.

In the journal Nature Communications, researchers from the Ruhr-Universitat Bochum, Technical University of Munich and Universiteit Leiden report in what way the efficiency of electrodes can be increased for the purpose of water electrolysis.

Typically, platinum is applied as catalyst, in order to accelerate the conversion of water to hydrogen and oxygen. For the reaction to be as efficient as possible, intermediates must not adhere too strongly or too weakly at the catalyst surface.

Traditional electrodes bind intermediates too strongly
The team headed by Prof Dr Aliaksandr Bandarenka from the Department of Physics of Energy Conversion and Storage in Munich and Prof Dr Wolfgang Schuhmann from the Center for Electrochemical Sciences in Bochum has calculated how strongly intermediates must adhere to the electrodes, in order to most efficiently facilitate the reaction. The analysis revealed that traditional electrodes from platinum, rhodium and palladium bind the intermediates a bit too strongly.

The researchers modified the properties of the platinum catalyst surface by applying a layer of copper atoms. With this additional layer, the system generated twice the amount of hydrogen than with a pure platinum electrode. But only if the researchers applied the copper layer directly under the top layer of the platinum atoms.

The group observed another useful side effect: the copper layer extended the service life of the electrodes, for example by rendering them more corrosion-resistant.

Water electrolysis has not yet been implemented on a large scale

Only four per cent of all hydrogen produced worldwide are the result of water electrolysis. As the electrodes used in the process are not efficient enough, large-scale application is not profitable. "To date, hydrogen has been mainly obtained from fossil fuels, with large CO2 volumes being released in the process," says Wolfgang Schuhmann.

"If we succeeded in obtaining hydrogen by using electrolysis instead, it would be a huge step towards climate-friendly energy conversion. For this purpose, we could utilise surplus electricity, for example generated by wind power."

"In addition, the research on this reaction allows us to test, how well we can design catalyst surfaces by precisely positioning different metal atoms," adds Aliaksandr Bandarenka. "A knowledge many other catalytic processes might benefit from."

J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A. S. Bandarenka (2016): Making the hydrogen evolution reaction in polymer electrolyte membrane electrolyzers even faster, Nature Communications, DOI: 10.1038/NCOMMS10990


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ruhr-University Bochum
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Flooding alleviated by targeted tree planting and river restoration
Birmingham, UK (SPX) Mar 14, 2016
A study by an international team of scientists, led by the Universities of Birmingham and Southampton, has shown that strategic planting of trees on floodplains could reduce the height of flooding in towns downstream by up to 20 per cent, according to research published in the journal Earth Surface Processes and Landforms. Researchers studied a whole river catchment in the New Forest over ... read more


WATER WORLD
Satellites to help check unauthorised construction at monuments

Improving farm and water management with DMC constellation

New NASA Instruments to Study Air Pollution, Cyclones

Sentinel-3A continues to impress

WATER WORLD
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

WATER WORLD
Woodlands in Europe: More tree species, more benefits

CCTV in the sky helping farmers fight back against illegal loggers

Eastern US forests more vulnerable to drought than before 1800s

Austin's urban forest

WATER WORLD
Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

Fuel or food? Study sees increasing competition for land, water resources

Stanford scientists make renewable plastic from carbon dioxide and plants

WATER WORLD
Building better solar technologies for deep space missions

The rise and fall of Spanish renewable energy giant Abengoa

Ingeteam Test Labs join Intertek's global SATELLITE program

Whole Foods Market announce large scale commercial solar project

WATER WORLD
Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

Norway's Statoil makes U.S. wind energy bet

Adwen Chooses Sentient Science For Computational Gearbox Testing

WATER WORLD
Coal fading from U.S. energy landscape

Chinese coal miners strike over wages, layoffs

U.S. coal exports on the decline; As JPMorgan sounds warning

High-carbon coal products could derail China's clean energy efforts

WATER WORLD
Sky high prices for Beijing low rises, with school rights

China buys soft power with hard cash in Hollywood

Beijing defends itself on rights 'with Chinese characteristics'

China slammed at UN over crackdown on activists, lawyers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.