Energy News  
NANO TECH
Electron spin control: Levitated nanodiamond is research gem
by Staff Writers
West Lafayette IN (SPX) Jul 26, 2016


This is a schematic of an optical tweezer used in a vacuum chamber by Purdue University researchers, who controlled the "electron spin" of a levitated nanodiamond. The advance could find applications in quantum information processing, sensors and studies into the fundamental physics of quantum mechanics. Image courtesy Purdue University image/ Tongcang Li. For a larger version of this image please go here.

Researchers have demonstrated how to control the "electron spin" of a nanodiamond while it is levitated with lasers in a vacuum, an advance that could find applications in quantum information processing, sensors and studies into the fundamental physics of quantum mechanics. Electrons can be thought of as having two distinct spin states, "up" or "down." The researchers were able to detect and control the electron spin resonance, or its change from one state to the other.

"We've shown how to continuously flip the electron spin in a nanodiamond levitated in a vacuum and in the presence of different gases," said Tongcang Li, an assistant professor of physics and astronomy and electrical and computer engineering at Purdue University.

Findings are detailed in a research paper being published on Tuesday (July 19) in the journal Nature Communications. The electron spin resonance was shown to differ in the presence of helium and oxygen gases, meaning the technique could be used in a new type of sensor to detect and measure gases.

Oxygen gas sensors are extensively used to monitor the oxygen concentration in automotive exhaust and in medical instruments such as anesthesia monitors and respirators. Nanodiamond-based sensors represent a potential improvement over conventional sensors.

"While more detailed studies are required to fully understand this phenomenon, our observation suggests a potential application for oxygen gas sensing," Li said.

The paper was authored by postdoctoral research associate Thai Hoang; doctoral students Jonghoon Ahn and Jaehoon Bang; and Li.

The levitating nanodiamonds also could find uses in quantum information processing, experimental techniques to probe fundamental physics in quantum mechanics, and the measurement of magnetic and gravitational fields, which could be applied to computer memory and experiments to search for deviations from Newton's law of gravitation.

Levitating the nanodiamonds in a vacuum enables precise control and rigorous measurement of the floating particles. The nanodiamonds are about 100 nanometers in diameter, or roughly the size of a virus, and contain "nitrogen vacancy centers" critical to potential practical applications.

A nitrogen-vacancy center is an atomic-scale defect formed in the diamond lattice by substituting a nitrogen atom for a carbon atom and creating a neighboring void in the crystal lattice. Researchers can exploit this feature to control the electron spin.

One type of laser was used to "trap" and levitate the nanoparticle in a vacuum chamber, and another was used to monitor the electron spin. A millimeter-scale antenna delivers microwaves to control and flip the electron spin, and a spectrometer detects these changes in spin. A vacuum is needed to reduce interference from air molecules.

Quantum computers would take advantage of phenomena described by quantum theory called "superposition" and "entanglement." Computers based on quantum physics might dramatically increase the capacity to process, store and transmit information.

One long-term goal of the Purdue research is to use the technique to test the famous Schrodinger's cat thought experiment, in which a cat may be both dead and alive at the same time.

"We want to put a single nanodiamond at two different locations at the same time," Li said.

"Electron spin control of optically levitated nanodiamonds in vacuum" Thai M. Hoang1, Jonghoon Ahn2, Jaehoon Bang2 and Tongcang Li1,2,3,4 Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA. 2School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA. 3Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA. 4Purdue Quantum Center, Purdue University, West Lafayette, Indiana 47907, USA.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Purdue University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Achieving a breakthrough in the formation of beam size controllable X-ray nanobeams
Osaka, Japan (SPX) Jul 13, 2016
A research team in Japan has now succeeded in developing high precision X-ray deformable mirrors that can be configured as necessary. They are the first to have achieved the formation of three types of X-ray focused beams, which differ in focused spot size, without changing the experimental setup. These findings constitute a considerable step towards developing a multifunctional X-ray microscope ... read more


NANO TECH
India to launch EO satellite jointly developed with US in 2021

ISRO to use radar imaging satellite to locate missing IAF plane

Landsat - The watchman that never sleeps

Europe's workhorse Sentinel ready for action

NANO TECH
GPS jamming: Keeping ships on the 'strait' and narrow

China's satnav industry grows 29 pct in 2015

Twinkle, Twinkle, GPS

Like humans, lowly cockroach uses a GPS to get around, scientists find

NANO TECH
New model is first to predict tree growth in earliest stages of tree life

Rainforest greener during 'dry' season

Trees' surprising role in the boreal water cycle quantified

Woody climbing vines are suffocating tropical forests

NANO TECH
Can palm oil be sustainable

Scientists unlock 'green' energy from garden grass

Biological wizardry ferments carbon monoxide into biofuel

Olive oil waste yields molecules useful in chemical and food industries

NANO TECH
Serendipitous observation may lead to more efficient solar cells and new gas sensors

Molten storage and thermophotovoltaics offer new solar power pathway

Solar plane completes epic round-the-world trip

Solar Impulse 2: Flying the flag for solar power

NANO TECH
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

NANO TECH
Moody's: Poland to remain dependent on coal

11 dead after fire at illegal Chinese coal mine

Sweden backs Vattenfall exit from German coal unit

Federal coal report is propaganda, House Republican says

NANO TECH
China to chart Communist Party future amid crackdowns

Chinese demolitions at Buddhist institute draw fire

Hong Kong journalists jailed on mainland: lawyer

Top Chinese military leader gets life sentence for corruption









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.