. Energy News .




CARBON WORLDS
Even with defects, graphene is strongest material in the world
by Staff Writers
New York NY (SPX) Jun 04, 2013


Graphene remains the strongest material ever measured and, as Columbia Engineering Professor James Hone once said, so strong that "it would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap." Credit: Illustration by Andrew Shea for Columbia Engineering.

In a new study, published in Science May 31, 2013, Columbia Engineering researchers demonstrate that graphene, even if stitched together from many small crystalline grains, is almost as strong as graphene in its perfect crystalline form. This work resolves a contradiction between theoretical simulations, which predicted that grain boundaries can be strong, and earlier experiments, which indicated that they were much weaker than the perfect lattice.

Graphene consists of a single atomic layer of carbon, arranged in a honeycomb lattice. "Our first Science paper, in 2008, studied the strength graphene can achieve if it has no defects-its intrinsic strength," says James Hone, professor of mechanical engineering, who led the study with Jeffrey Kysar, professor of mechanical engineering.

"But defect-free, pristine graphene exists only in very small areas. Large-area sheets required for applications must contain many small grains connected at grain boundaries, and it was unclear how strong those grain boundaries were. This, our second Science paper, reports on the strength of large-area graphene films grown using chemical vapor deposition (CVD), and we're excited to say that graphene is back and stronger than ever."

The study verifies that commonly used methods for post-processing CVD-grown graphene weaken grain boundaries, resulting in the extremely low strength seen in previous studies. The Columbia Engineering team developed a new process that prevents any damage of graphene during transfer.

"We substituted a different etchant and were able to create test samples without harming the graphene," notes the paper's lead author, Gwan-Hyoung Lee, a postdoctoral fellow in the Hone lab.

"Our findings clearly correct the mistaken consensus that grain boundaries of graphene are weak. This is great news because graphene offers such a plethora of opportunities both for fundamental scientific research and industrial applications."

In its perfect crystalline form, graphene (a one-atom-thick carbon layer) is the strongest material ever measured, as the Columbia Engineering team reported in Science in 2008-so strong that, as Hone observed, "it would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap."

For the first study, the team obtained small, structurally perfect flakes of graphene by mechanical exfoliation, or mechanical peeling, from a crystal of graphite. But exfoliation is a time-consuming process that will never be practical for any of the many potential applications of graphene that require industrial mass production.

Currently, scientists can grow sheets of graphene as large as a television screen by using chemical vapor deposition (CVD), in which single layers of graphene are grown on copper substrates in a high-temperature furnace. One of the first applications of graphene may be as a conducting layer in flexible displays.

"But CVD graphene is 'stitched' together from many small crystalline grains-like a quilt-at grain boundaries that contain defects in the atomic structure," Kysar explains.

"These grain boundaries can severely limit the strength of large-area graphene if they break much more easily than the perfect crystal lattice, and so there has been intense interest in understanding how strong they can be."

The Columbia Engineering team wanted to discover what was making CVD graphene so weak. In studying the processing techniques used to create their samples for testing, they found that the chemical most commonly used to remove the copper substrate also causes damage to the graphene, severely degrading its strength.

Their experiments demonstrated that CVD graphene with large grains is exactly as strong as exfoliated graphene, showing that its crystal lattice is just as perfect. And, more surprisingly, their experiments also showed that CVD graphene with small grains, even when tested right at a grain boundary, is about 90% as strong as the ideal crystal.

"This is an exciting result for the future of graphene, because it provides experimental evidence that the exceptional strength it possesses at the atomic scale can persist all the way up to samples inches or more in size," says Hone. "This strength will be invaluable as scientists continue to develop new flexible electronics and ultrastrong composite materials."

Strong, large-area graphene can be used for a wide variety of applications such as flexible electronics and strengthening components-potentially, a television screen that rolls up like a poster or ultrastrong composites that could replace carbon fiber.

Or, the researchers speculate, a science fiction idea of a space elevator that could connect an orbiting satellite to Earth by a long cord that might consist of sheets of CVD graphene, since graphene (and its cousin material, carbon nanotubes) is the only material with the high strength-to-weight ratio required for this kind of hypothetical application.

The team is also excited about studying 2D materials like graphene. "Very little is known about the effects of grain boundaries in 2D materials," Kysar adds.

"Our work shows that grain boundaries in 2D materials can be much more sensitive to processing than in 3D materials. This is due to all the atoms in graphene being surface atoms, so surface damage that would normally not degrade the strength of 3D materials can completely destroy the strength of 2D materials.

"However with appropriate processing that avoids surface damage, grain boundaries in 2D materials, especially graphene, can be nearly as strong as the perfect, defect-free structure."

.


Related Links
Columbia University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





CARBON WORLDS
Climate: Carbon 'offsets' rise 4% in 2012
Paris (AFP) May 30, 2013
Trade in carbon offsets, a voluntary means of reducing one's footprint in global-warming gases, rose by four percent in volume terms last year as the market price of carbon collapsed, a report said on Thursday. Voluntary commitments for offsets for immediate or future delivery reached 101 million tonnes of carbon dioxide or its equivalent (CO2e) after 97 million tonnes CO2e in 2011, Ecosyste ... read more


CARBON WORLDS
New maps show how shipping noise spans the globe

Magnetospheric Multiscale Mission Team Assemble Flight Observatory

Elevated carbon dioxide making arid regions greener

Landsat 8 Satellite Begins Watch

CARBON WORLDS
Lockheed Martin Completes Functional Testing of First GPS III Satellite Bus Electronic Systems

Glitch puts off Indian navigation satellite launch by a fortnight

Orbcomm And Cartrack Deliver Telematics Solution For African Market

Narayansami Inaugurates ISRO Navigation Centre

CARBON WORLDS
Brazil police deployed to contain land feud

Brazil grapples with indigenous land protests

Forest, soil carbon important but does not offset fossil fuel emissions

Smithsonian scientists discover that rainforests take the heat

CARBON WORLDS
Scotland gives green light to $710M wood biomass heat-power plant

Climate change raises stakes on US ethanol policy

Molecular switch for cheaper biofuel

Enzyme from wood-eating gribble could help turn waste into biofuel

CARBON WORLDS
US DoI Approves SolarReserve's 100 MW Arizona Solar Power Project

CTRL+P: Printing Australia's largest solar cells

Renewable energy project in Arizona, Nevada get U.S. approval

Greenwood Biosar Commences Construction of One of Vermont's Largest Solar Arrays

CARBON WORLDS
Uruguay deficit likely to speed windpower plans

Romania decree threatens green energy projects

Philippines ready to move forward on renewable energy?

Cold climate wind energy showing huge potential

CARBON WORLDS
Germany's top court hears case against giant coal mine

Glencore Xstrata cancels coal export terminal plans

Proposed U.S. Northwest coal export project scrapped

China mine accident kills 22: state media

CARBON WORLDS
Chinese website bans searches for 'yellow duck'

Obama urged to press China to free 16 prisoners

China blocks Tiananmen anniversary remembrance

Hong Kong marks Tiananmen as China blocks remembrance




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement