. Energy News .




BIO FUEL
'Fat worms' inch scientists toward better biofuel production
by Staff Writers
East Lansing MI (SPX) Mar 01, 2013


To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

Fat worms confirm that researchers from Michigan State University have successfully engineered a plant with oily leaves - a feat that could enhance biofuel production as well as lead to improved animal feeds.

The results, published in the current issue of The Plant Cell, the journal of the American Society of Plant Biologists, show that researchers could use an algae gene involved in oil production to engineer a plant that stores lipids or vegetable oil in its leaves - an uncommon occurrence for most plants.

Traditional biofuel research has focused on improving the oil content of seeds. One reason for this focus is because oil production in seeds occurs naturally. Little research, however, has been done to examine the oil production of leaves and stems, as plants don't typically store lipids in these tissues.

Christoph Benning, MSU professor of biochemistry and molecular biology, led a collaborative effort with colleagues from the Great Lakes Bioenergy Research Center. The team's efforts resulted in a significant early step toward producing better plants for biofuels.

"Many researchers are trying to enhance plants' energy density, and this is another way of approaching it," Benning said. "It's a proof-of-concept that could be used to boost plants' oil production for biofuel use as well as improve the nutrition levels of animal feed."

Benning and his colleagues began by identifying five genes from one-celled green algae. From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant's leaf tissue.

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning said.

"If oil can be extracted from leaves, stems and seeds, the potential energy capacity of plants may double," he said. "Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops."

Moreover, algae can be grown on poor agricultural land - a big plus in the food vs. fuel debate, he added.

"These basic research findings are significant in advancing the engineering of oil-producing plants," said Kenneth Keegstra, GLBRC scientific director and MSU University Distinguished Professor of biochemistry and molecular biology.

"They will help write a new chapter on the development of production schemes that will enhance the quantity, quality and profitability of both traditional and nontraditional crops."

Additional MSU researchers and GLBRC members contributing to the study include Gregg Howe, biochemistry and molecular biology professor; John Olhrogge, University Distinguished Professor of plant biology; and Gavin Reid, biochemistry and molecular biology associate professor.

.


Related Links
Michigan State University
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





BIO FUEL
The impact of algae parasite on algae biofuel output
San Diego CA (SPX) Feb 26, 2013
As part of an ongoing effort to improve commercial scale algae biofuel production, a group of scientists, led by crude oil producer Sapphire Energy, Inc., have announced the completion of a collaborative study which identified the morphology, ultrastructure, and life history of A. protococcarum, one of the most difficult to manage algae parasites. Their findings are detailed in "Characteri ... read more


BIO FUEL
Northrop Grumman Delivers First Communications Payload for USAF's Enhanced Polar System

New approach alters malaria maps

Promising New Technique for Probing Earth's Deep Interior

Tiny CREPT Instrument to Study the Radiation Belts

BIO FUEL
USAF Awards Lockheed Martin Contracts to Begin Work on Next Set of GPS III Satellites

Telit Offers COMBO 2G Chip For Multi Satellite Positioning Receiver

Boeing Awarded USAF Contract to Continue GPS Modernization

A system that improves the precision of GPS in cities by 90 percent

BIO FUEL
Declining Vegetation Across The Eastern US Observed

Russia moves to shut down Lake Baikal paper mill

Turkmenistan to plant 3 million trees to make desert bloom

Decoys could blunt spread of ash-killing beetles

BIO FUEL
Estimates reduce amount of additional land available for biofuel production

'Fat worms' inch scientists toward better biofuel production

The impact of algae parasite on algae biofuel output

Engineering cells for more efficient biofuel production

BIO FUEL
Ivanpah Project Reaches "First Flux" Milestone

Czech Company Plans to Invest EUR 400 Mln Into Solar Plants in Ukraine

MECASOLAR to present solar trackers at ENREG ENERGIA REGENERABILA

SOLON and MP2 Capital Complete Construction of Multi-Campus Solar System

BIO FUEL
Scientists have overestimated capacity of wind farms to generate power

Rethinking wind power

Global wind energy capacity grows 19 percent in 2012

Finding the right space for offshore wind turbines

BIO FUEL
China mine blast kills 17: state media

BIO FUEL
China Nobel winner Mo Yan defies critics

Football author turned government critic splits China

China turns to all-boys classes as girls progress

Hong Kong court hears landmark maid residency case




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement