Energy News  
CHIP TECH
For wearable electronic devices, NIST shows plastic holes are golden
by Staff Writers
Washington DC (SPX) Nov 25, 2016


NIST research has found that the flexible plastic membrane on which wearables would be built might work better if the membrane had microscopic holes in it. Image courtesy Reyes-Hernandez/NIST. For a larger version of this image please go here.

In science, sometimes the best discoveries come when you're exploring something else entirely. That's the case with recent findings from the National Institute of Standards and Technology (NIST), where a research team has come up with a way to build safe, nontoxic gold wires onto flexible, thin plastic film. Their demonstration potentially clears the path for a host of wearable electronic devices that monitor our health.

The finding might overcome a basic issue confronting medical engineers: How to create electronics that are flexible enough to be worn comfortably on or even inside the human body - without exposing a person to harmful chemicals in the process - and will last long enough to be useful and convenient. "Overall this could be a major step in wearable sensor research," said NIST biomedical engineer Darwin Reyes-Hernandez.

Wearable health monitors are already commonplace; bracelet-style fitness trackers have escaped mere utility to become a full-on fashion trend. But the medical field has its eye on something more profound, known as personalized medicine. The long-term goal is to keep track of hundreds of real-time changes in our bodies - from fluctuations in the amount of potassium in sweat to the level of particular sugars or proteins in the bloodstream.

These changes manifest themselves a bit differently in each person, and some of them could mark the onset of disease in ways not yet apparent to a doctor's eye. Wearable electronics might help spot those problems early.

First, though, engineers need a way to build them so that they work dependably and safely - a tall order for the metals that make up their circuits and the flexible surfaces or "substrates" on which they are built.

Gold is a good option because it does not corrode, unlike most metals, and it has the added value of being nontoxic. But it's also brittle. If you bend it, it tends to crack, potentially breaking completely - meaning thin gold wires might stop conducting electricity after a few twists of the body.

"Gold has been used to make wires that run across plastic surfaces, but until now the plastic has needed to be fairly rigid," said Reyes-Hernandez. "You wouldn't want it attached to you; it would be uncomfortable."

Reyes-Hernandez doesn't work on wearable electronics. His field is microfluidics, the study of tiny quantities of liquid and their flow, typically through narrow, thin channels. One day he was exploring a commercially available porous polyester membrane - it feels like ordinary plastic wrap, only a lot lighter and thinner - to see if its tiny holes could make it useful for separating different fluid components. He patterned some gold electrodes onto the membrane to create a simple device that would help with separations.

While sitting at his desk, he twisted the plastic a few times and noticed the electrodes, which covered numerous pores as they crisscrossed the surface, still conducted electricity. This wasn't the case with nonporous membranes.

"Apparently the pores keep the gold from cracking as dramatically as usual," he said. "The cracks are so tiny that the gold still conducts well after bending."

Reyes-Hernandez said the porous membrane's electrodes show even higher conductivity than their counterparts on rigid surfaces, an unexpected benefit that he cannot explain as yet. The next steps, he said, will be to test changes in conductivity over the long term after many bends and twists, and also to build some sort of sensor out of the electrode-coated membrane to explore its real-world usability.

"This thin membrane could fit into very small places," he said, "and its flexibility and high conductivity make it a very special material, almost one of a kind."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Making spintronic neurons sing in unison
Gothenburg, Sweden (SPX) Nov 18, 2016
What do fire flies, Huygens's wall clocks, and even the heart of choir singers, have in common? They can all synchronize their respective individual signals into one single unison tone or rhythm. Now researchers at University of Gothenburg have taught two different emerging classes of nano-scopic microwave signal oscillators, which can be used as future spintronic neurons, to sing in unison with ... read more


CHIP TECH
Who knew? Ammonia-rich bird poop cools the atmosphere

How lightning strikes can improve storm forecasts

Farewell to Sentinel-2B

NASA finds unusual origins of high-energy electrons

CHIP TECH
Launch of new Galileo navigation quartet

How NASA and John Deere Helped Tractors Drive Themselves

Flying the fantastic four

Russian Space Agency May Launch Up to 4 Glonass Navigation Satellites Next Year

CHIP TECH
Remote Amazon tribe kills illegal gold miners: officials

Large forest die-offs can have effects that ricochet to distant ecosystems

Global boreal forests differ but not immune to climate change

Mangrove protection key to survival for Senegalese community

CHIP TECH
Argonne researchers study how reflectivity of biofuel crops impacts climate

UNIST researchers turn waste gas into road-ready diesel fuel

NextCoal to produce bio-coal for export to Japan, bio-oil for domestic use

New biofuel cell with energy storage

CHIP TECH
Africa looks to solar for communities off the grid

Sweden to scrap taxes on solar energy in 2017

Tesla shareholders approve merger with SolarCity

New Jersey's NEP Solar secures major funding agreement

CHIP TECH
Owl-inspired wing design reduces wind turbine noise by 10 decibels

DONG Energy sets wind energy sights on Taiwan

Interior set to rule on future of BLM's Renewable Energy Program

Microsoft Corp. taps deeper into wind power

CHIP TECH
Canada to phase out coal power by 2030: official

Toll in China mine blast rises to 33

China blast kills 15 miners, 18 missing: state media

U.S., Canada aim to cut emissions from coal

CHIP TECH
China to control public smoking nationwide by year-end

Dalai Lama visits Mongolia over China's objections

Eight dead in fighting in Myanmar town on China border

China's most-wanted corruption fugitive returns from US









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.