Energy News  
UAV NEWS
Future drones likely to resemble 300-million-year-old flying machine
by Staff Writers
Adelaide, Australia (SPX) Apr 28, 2021

illustration only

University of South Australia researchers have drawn inspiration from a 300-million-year-old superior flying machine - the dragonfly - to show why future flapping wing drones will probably resemble the insect in shape, wings and gearing.

A team of PhD students led by UniSA Professor of Sensor Systems, Javaan Chahl, spent part of the 2020 COVID-19 lockdown designing and testing key parts of a dragonfly-inspired drone that might match the insect's extraordinary skills in hovering, cruising and aerobatics.

The UniSA students worked remotely on the project, solving mathematical formulas at home on whiteboards, digitising stereo photographs of insect wings into 3D models, and using spare rooms as rapid prototyping workshops to test parts of the flapping wing drone.

Their findings have been published in the journal Drones.

Describing the dragonfly as the "apex insect flyer," Prof Chahl says numerous engineering lessons can be learned from its mastery in the air.

"Dragonflies are supremely efficient in all areas of flying. They need to be. After emerging from under water until their death (up to six months), male dragonflies are involved in perpetual, dangerous combat against male rivals. Mating requires an aerial pursuit of females and they are constantly avoiding predators. Their flying abilities have evolved over millions of years to ensure they survive," Prof Chahl says.

"They can turn quickly at high speeds and take off while carrying more than three times their own body weight. They are also one of nature's most effective predators, targeting, chasing and capturing their prey with a 95 per cent success rate."

The use of drones has exploded in recent years - for security, military, delivery, law enforcement, filming, and more recently health screening purposes - but in comparison to the dragonfly and other flying insects they are crude and guzzle energy.

The UniSA team modelled the dragonfly's unique body shape and aerodynamic properties to understand why they remain the ultimate flying machine.

Because intact dragonflies are notoriously difficult to capture, the researchers developed an optical technique to photograph the wing geometry of 75 different dragonfly (Odonata) species from glass display cases in museum collections.

In a world first experiment, they reconstructed 3D images of the wings, comparing differences between the species.

"Dragonfly wings are long, light and rigid with a high lift-to-drag ratio which gives them superior aerodynamic performance.

"Their long abdomen, which makes up about 35 per cent of their body weight, has also evolved to serve many purposes. It houses the digestive tract, is involved in reproduction, and it helps with balance, stability and manoeuvrability. The abdomen plays a crucial role in their flying ability."

The researchers believe a dragonfly lookalike drone could do many jobs, including collecting and delivering awkward, unbalanced loads, safely operating near people, exploring delicate natural environments and executing long surveillance missions.


Related Links
University of South Australia
UAV News - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


UAV NEWS
Cuban engineers' dreams take flight with home-grown drones
San Nicolas De Bari, Cuba (AFP) April 27, 2021
Disguised as a sparrowhawk, and convincingly mimicking its predatory cry, a drone made of wood, scrap metal and plastic disperses birds at a Cuban airfield. From afar one could be fooled: soaring and swooping with its 1.3-meter (4.3-foot) wingspan, the mechanical bird flies autonomously for an hour at a time, and boasts impressive, if somewhat stiff plumage. It is the creation of a group of engineers keen to develop cheap, local alternatives to foreign-made technology on the communist island und ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

UAV NEWS
BlackSky Increases Capacity as Latest Satellite Enters Commercial Operations

China's Fengyun weather data freely available for EO applications

Spotting cows from space

Radar satellites can better protect against bushfires and floods

UAV NEWS
GPS tracking could help tigers and traffic coexist in Asia

US Army Geospatial Center Upgrades OGC Membership to Advance Open Systems

MyGalileoSolution and MyGalileoDrone: A word from the winners

Google Maps to show more eco-friendly routes

UAV NEWS
Brazilian Amazon released more carbon than it stored in 2010s

Most low-income blocks in U.S. cities are hotter, have fewer trees than suburbs

Andean forests have high potential to store carbon under climate change

Apple announces $200 mn forestry fund to reduce carbon

UAV NEWS
Hydrocracking our way to recycling plastic waste

Will your future clothes be made of algae?

Incentives could turn costs of biofuel mandates into environmental benefits

Dominating fungus could be solution to producing more biofuels and chemicals

UAV NEWS
Combining solar panels and lamb grazing increases land productivity, study finds

Solar development: super bloom or super bust for desert species?

Solar-powered desalination unit shows great promise

Airports could generate enough solar energy to power a city: Study

UAV NEWS
Vertical turbines could be the future for wind farms

Researchers working to further develop monopile production for offshore wind farms

Blowing in the wind: Fishermen threaten South Korea carbon plans

In Texas, a rancher swaps his oil pumps for wind turbines

UAV NEWS
The new EU climate target could phase out coal power in Europe as early as 2030

China doubles down on coal plants abroad despite carbon pledge at home

Rescuers search China mine for workers trapped for 3 weeks

Engie says will ditch coal in Chile

UAV NEWS
Kissinger warns of 'colossal' dangers in US-China tensions

Hong Kong passes immigration bill with 'exit ban' powers

'Blind box' craze grips China's youth and mints toymakers a fortune

'Nomadland' wins big at pandemic Oscars as Zhao makes history









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.