![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Palmira, Colombia (SPX) Apr 10, 2019
Cattle are a mainstay for many smallholders but their farms are often on degraded lands, which increases cattle's impact on the environment and lowers their production of milk and meat. Researchers at the International Center for Tropical Agriculture (CIAT) have shown that Brachiaria grass species can reduce greenhouse gas emissions from cattle and increase productivity - and breeding improved varieties can potentially augment the environmental and economic benefits. But the breeding process is difficult, time-consuming and expensive. A breakthrough on Brachiaria's complex genome may make breeding much more efficient, and potentially increase the speed with which new grasses begin benefiting cattle farmers and the environment. Margaret Worthington, a geneticist at CIAT and the University of Arkansas, and colleagues created the first dense molecular map of B. humidicola, a robust and environmentally friendly forage grass. They also pinpointed the candidate genes for the plant's asexual reproductive mechanism, which is a huge asset for plant breeders. The findings were published in January in BMC Genomics. "The idea is to create a better crop with less time and less money and to get it out faster to farmers," said Worthington. "By using this molecular marker, you increase the odds of finding that rare winner." Traditional plant-breeding methods for Brachiaria grasses involve one of two complex techniques. One is to grow the plant to seed, and to study the seeds under a microscope to determine if the plant reproduced asexually. The other involves excising the plant's embryos and conducting a similar analysis. Both techniques require many weeks, significant funds and highly trained specialists. Asexual reproduction through seed, called apomixis, is key for developing new crop varieties for widespread use. Crops that reproduce through apomixis conserve the same traits from one generation to the next, essentially locking in sought-after characteristics such as drought tolerance or high nutritional value. Plants that reproduce sexually do not reliably pass on desired traits to subsequent generations.
Seeds, perpetually Brachiaria grasses have often been considered an "orphan crop," due to a lack of investment in research, but their potential for making tropical farms more productive and better for the environment is well known among tropical forage specialists. One recent study found that B. humidicola was especially adept at reducing the nitrous oxide, a strong greenhouse gas, emitted from soil as result of cattle urine deposition. In addition, CIAT researchers have identified mechanisms that this tropical grass uses to efficiently acquire nutrients from soil. Brachiaria breeders also value apomixis for smallholders in developing nations who have limited resources for investing in improving their farms. Improved grass varieties that produce sufficient quantities of trait-retaining seeds can eliminate the need to purchase new seeds for every planting, which is a potentially expensive barrier to adoption. "This breakthrough allows for the acceleration of our breeding program for multiple traits, including the development of tropical forages that can help reduce greenhouse gas emissions and make farming more eco-efficient," said Joe Tohme, a senior scientist at CIAT and study co-author. "This discovery represents a milestone in the path toward developing mitigation technologies in the livestock production sector," said Jacobo Arango, a study co-author who is an environmental biologist from CIAT and a Lead Author for the next Assessment Report on Climate Change Mitigation of the Intergovernmental Panel on Climate Change (IPCC).
![]() ![]() Farming for natural profits in China Stanford CA (SPX) Apr 08, 2019 A new strategy being rolled out in China relies on the idea that farmers can harvest much more than crops. The idea is that well-managed, diverse agricultural lands can provide flood control, water purification and climate stabilization, among other valuable services. A recent case-study by researchers at Stanford, McGill University and the Chinese Academy of Sciences provide a promising demonstration of this approach - farmers who took environmental concerns into account doubled their incomes and ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |