. Energy News .




NANO TECH
Gold nanoparticles improve photodetector performance
by Staff Writers
Washington DC (SPX) Aug 07, 2013


File image.

The mineral molybdenum disulfide (MoS2), which, when solid, behaves in many ways like grease, has semiconducting properties that make it a promising alternative to silicon or graphene in electronic devices.

It also strongly absorbs visible light, and so it has been widely employed in light-sensing photodetectors, which are used in a wide range of technologies, such as environmental sensing, process control in factories, and optical communication devices.

Researchers at the National University of Singapore have now found a way to boost the performance of MoS2 photodetectors even further -- with nanoparticles of gold. They describe this improvement in the journal Applied Physics Letters, which is produced by AIP Publishing.

Wei Chen, an assistant professor of chemistry and physics, along with graduate student Jia Dan Lin, and their colleagues, applied a single, loosely arranged layer of gold nanoparticles to the top of a MoS2 photodetector.

The gold layer, although less than 15 billionths of a meter thick (representing the diameter of each individual nanoparticle) and made up of fewer than 1000 individual particles, improved the photodetectors' efficiency by a factor of three, according to Chen.

"We anticipate orders of magnitude higher improvement of MoS2's sensitivity using a higher density of coated nanoparticles," Chen said.

Chen suspects that the plasmon oscillations (variations in the electron density) of individual nanoparticles -- which enhance the local optical field -- may be one reason for the improved performance of the photodetectors.

"The next step will focus on varying the materials used to make the nanoparticles, as well as their size, shape, and arrangement," Chen noted -- adjustments that will "tune" the plasmon resonance wavelength of the metal nanostructure arrays, making it possible for MoS2 photodetectors todetect multiple colors for the first time.

The article, "Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor colors" by Jiadan Lin, Hai Li, Hua Zhang and Wei Chen appears in the journal Applied Physics Letters. Authors on this study are affiliated with National University of Singapore and Nanyang Technological University.

.


Related Links
American Institute of Physics
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
New NIST nanoscale indenter takes novel approach to measuring surface properties
Washington DC (SPX) Jul 26, 2013
Researchers from the National Institute of Standards and Technology (NIST) and the University of North Carolina have demonstrated a new design for an instrument, a "instrumented nanoscale indenter," that makes sensitive measurements of the mechanical properties of thin films - ranging from auto body coatings to microelectronic devices - and biomaterials. The NIST instrument uses a unique techn ... read more


NANO TECH
GOES-R Satellite Magnetometer Boom Deployment Successful

NASA's Van Allen Probes Discover Particle Accelerator in the Heart of Earth's Radiation Belts

Seeing Photosynthesis from Space: NASA Scientists Use Satellites to Measure Plant Health

First high-resolution national carbon map - Panama

NANO TECH
'Spoofing' attack test takes over ship's GPS navigation at sea

Orbcomm Globaltrak Completes Shipment Of Fuel Monitoring Solution In Afghanistan

Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

Lockheed Martin Delivers Antenna Assemblies For Integration On First GPS III Satellite

NANO TECH
7 arrested in murder of Costa Rican environmentalist

Tropical Ecosystems Boost Carbon Dioxide as Temperatures Rise

China passes laws to protect country's rare and ancient trees

Mini-monsters of the forest floor

NANO TECH
Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Drought response identified in potential biofuel plant

NANO TECH
OPEC Nations Seek Cash For Solar Shift

Cleaning Solar Panels Often Not Worth the Cost

Large-scale solar funding good news for a renewable future

Australia to move ahead with massive solar project

NANO TECH
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

NANO TECH
Greenpeace says Chinese coal company exploiting water

Major China coal plant drains lake, wells: Greenpeace

Troubled U.K. Coal enters administration in restructuring move

Report: Alpha Australian coal project is 'stranded'

NANO TECH
China singer set to be freed after bomb threat: lawyer

China's Bo Xilai accused of $4m graft: media

China airport bomber formally arrested: lawyer

Work on world's tallest building stopped in China: media




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement