. Energy News .




CHIP TECH
Graphene-based system could lead to improved information processing
by David Chandler, MIT News Office
Cambridge MA (SPX) Jun 25, 2013


The new system works by controlling waves called surface plasmons.

Researchers at MIT have proposed a new system that combines ferroelectric materials - the kind often used for data storage - with graphene, a two-dimensional form of carbon known for its exceptional electronic and mechanical properties. The resulting hybrid technology could eventually lead to computer and data-storage chips that pack more components in a given area and are faster and less power-hungry.

The new system works by controlling waves called surface plasmons. These waves are oscillations of electrons confined at interfaces between materials; in the new system the waves operate at terahertz frequencies. Such frequencies lie between those of far-infrared light and microwave radio transmissions, and are considered ideal for next-generation computing devices.

The findings were reported in a paper in Applied Physics Letters by associate professor of mechanical engineering Nicholas Fang, postdoc Dafei Jin and three others.

The system would provide a new way to construct interconnected devices that use light waves, such as fiber-optic cables and photonic chips, with electronic wires and devices. Currently, such interconnection points often form a bottleneck that slows the transfer of data and adds to the number of components needed.

The team's new system allows waves to be concentrated at much smaller length scales, which could lead to a tenfold gain in the density of components that could be placed in a given area of a chip, Fang says.

The team's initial proof-of-concept device uses a small piece of graphene sandwiched between two layers of the ferroelectric material to make simple, switchable plasmonic waveguides. This work used lithium niobate, but many other such materials could be used, the researchers say.

Light can be confined in these waveguides down to one part in a few hundreds of the free-space wavelength, Jin says, which represents an order-of-magnitude improvement over any comparable waveguide system. "This opens up exciting areas for transmitting and processing optical signals," he says.

Moreover, the work may provide a new way to read and write electronic data into ferroelectric memory devices at very high speed, the MIT researchers say.

In addition to Fang and Jin, the research was carried out by graduate student Anshuman Kumar, former postdoc Kin Hung Fung (now at Hong Kong Polytechnic University), and research scientist Jun Xu.

.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





CHIP TECH
Danish chemists in molecular chip breakthrough
Copenhagen, Denmark (SPX) Jun 24, 2013
Electronic components built from single molecules using chemical synthesis could pave the way for smaller, faster and more green and sustainable electronic devices. Now for the first time, a transistor made from just one molecular monolayer has been made to work where it really counts. On a computer chip. The molecular integrated circuit was created by a group of chemists and physicists fr ... read more


CHIP TECH
Astrium and CNES to improve Pleiades images quality

Five Years of Stereo Imaging for NASA's TWINS

Vegetation as Seen by Suomi NPP

How did a third radiation belt appear in the Earth's upper atmosphere

CHIP TECH
Beidou's second trial held in Yangtze Delta

The next batch of Galileo satellites

Raytheon's latest air traffic management systems go into continuous operation

Raytheon's Satellite Air Navigation System marks 10 years of continuous service in the US

CHIP TECH
Study reveals potent carbon-storage potential of manmade wetlands

The contribution of particulate matter to forest decline

Whitebark Pine Trees: Is Their Future at Risk

Brazil's restive natives step protests over land rights

CHIP TECH
High-octane bacteria could ease pain at the pump

Novel Enzyme from Tiny Gribble Could Prove a Boon for Biofuels Research

A cheaper drive to 'cool' fuels

When green algae run out of air

CHIP TECH
New Asoka Adapter First to Network Solar Power Systems Using Powerline Communications

Solar Trackers Beam Growing Energy Trend into China and India

Inmarsat Partners With Students To Power Mobile Satcoms During World Solar Challenge

Solar Impulse Plane Is Completing A Trans-continental Flight

CHIP TECH
Renewable energy use gaining worldwide: IEA

Spanish downturn a disaster for green energy

New certified small wind turbine announced for US market

Mongolia confronts smog with launch of first wind farm

CHIP TECH
Report: Alpha Australian coal project is 'stranded'

Germany's top court hears case against giant coal mine

Glencore Xstrata cancels coal export terminal plans

Proposed U.S. Northwest coal export project scrapped

CHIP TECH
Blind Chinese activist Chen arrives in Taiwan

NYU denies Chen forced out over China tie-up

US lashes China, Russia for human trafficking

China arrests man who planned Tiananmen protest: wife




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement