Energy News  
NANO TECH
Harnessing microorganisms for smart microsystems
by Staff Writers
Toyohashi, Japan (SPX) Apr 16, 2019

file illustration only

A research team at the Department of Mechanical Engineering at Toyohashi University of Technology has developed a method to construct a biohybrid system that incorporates Vorticella microorganisms.

The method allows movable structures to be formed in a microchannel and combined with Vorticella. In addition, the biohybrid system demonstrates the conversion of motion from linear motion to rotation. The results of their research was published in the IEEE/ASME Journal of Microelectromechanical Systems on April 11th, 2019.

Complex control systems are required for the operation of smart microsystems, and their sizes should be reduced. Cells are expected to be applicable as alternatives to these complex control systems. Because a cell integrates many functions in its body and responds to its surrounding environment, cells are intelligent and can be used in smart micromechanical systems.

In particular, Vorticella convallaria has a stalk (approximately 100 um in length) that contracts and relaxes, and it works as an autonomous linear actuator. The combination of stalks and movable structures will form an autonomous microsystem.

However, the construction of biohybrid systems in a microchannel is difficult, as it is necessary to establish a cell patterning method and a biocompatible assembly process for the structure and cell.

The research group has developed a method to construct a biohybrid system that incorporates Vorticella. "Harnessing microorganisms requires that a batch assembly method be applied to the movable components in a microchannel.

It is necessary to pattern a water-soluble sacrificial layer and confine the movable components in a microchannel," says Moeto Nagai, a lecturer at Toyohashi University of Technology and the leader of the research team.

Vorticella cells were placed around blocks in the channel by applying magnetic force. These processes were applied to demonstrate how Vorticella converts the motion of a movable component.

"The concept of harnessing a component to a microorganism seems simple, but it is difficult for even a microfabrication expert to make harnesses that can follow the motions of microorganisms. Hazardous chemicals should be avoided, and a multidisciplinary approach should be taken," says Nagai.

His group is familiar with microfabrication and has conducted considerable research in the field of microbiology. They found a biocompatible approach for making and releasing harnesses in a microchannel.

After permeabilized treatment, Vorticella stalks respond to changes in calcium ion concentration, and they can operate as calcium ion-responsive valves. The research team believes that calcium ion-sensitive motors of Vorticella will facilitate the realization of autonomous fluidic valves, regulators, and mixers, as well as wearable smart microsystems, such as an automated insulin infusion pump for diabetes.

Research Report: Batch Assembly of SU-8 Movable Components in Channel Under Mild Conditions for Dynamic Microsystems: Application to Biohybrid Systems


Related Links
Toyohashi University of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
AD alloyed nanoantennas for temperature-feedback identification of viruses and explosives
Vladivostok, Russia (SPX) Apr 03, 2019
Scientists of Far Eastern Federal University (FEFU) in collaboration with colleagues from Far Eastern Branch of Russian Academy of Sciences (FEB RAS), ITMO University and Swinburne University of Technology (Australia) developed a method for efficient mass production of silicon-germanium fully alloyed nanoantennas. On their basis, optical biosensory platforms and next-generation chemical sensors for fast and accurate tracing of viruses, pollutions, explosives, etc. at low concentrations are expecte ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Natural climate processes overshadow recent human-induced Walker circulation trends

Researchers unveil effects of dust particles on cloud properties

Experts reveal that clouds have moderated warming triggered by climate change

Free satellite data available to help tackle public sector challenges

NANO TECH
Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

Record-Breaking Satellite Advances NASA's Exploration of High-Altitude GPS

China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

Second GPS III satellite arrives at Cape Canaveral ahead of July launch

NANO TECH
Help NASA Measure Trees with Your Smartphone

US-China trade war 'imperils' Amazon forest, experts warn

Bolsonaro says Brazil owes world nothing on environment

Project promises to turn palm oil plantations back into rainforest in Borneo

NANO TECH
Tracking sludge flow for better wastewater treatment and more biogas

OU engineers discover novel role of water in production of renewable fuels

Mega-order from Finland for Dutch energy technology

Scientists turn back evolutionary clock to develop high-CO2-tolerant microalgae

NANO TECH
The interface makes the difference in Perovskite-based solar cells

Renewables are a better investment than carbon capture for tackling climate change

Helping flexible solar panels last longer

Durability vs. recyclability: Dueling goals in making electronics more sustainable

NANO TECH
The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

E.ON announces start of construction on South Texas windfarm

DNV GL to deliver 5-minute energy forecast pilot for Australia's Ararat Wind Farm

NANO TECH
Contentious India-backed Australia mine clears major hurdle

Smog chokes coal-dependent Poland with no end in sight

Push for more coal power in China imperils climate

China investigates officials after deadly mine accident

NANO TECH
China defends exit ban on human rights lawyer

Diplomats, activists decry Chinese 'threats' at UN rights council

China is 'threat to world' says dissident writer

Hong Kong's China extradition plan sparks alarm









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.