. Energy News .




FARM NEWS
Hidden genome unveils how plants adapt to global environments
by Staff Writers
La Jolla CA (SPX) Mar 07, 2013


This graphic depicts a collection of wild Arabidopsis thaliana from around the world that have adapted to their local environment. This collection of plants was used to understand the patterns of population epigenomic diversity within a species. Credit: Photographs were contributed by Patrick Gooden, Kathleen Donohue and 2011 Google. Graphic was designed by Jamie Simon.

Scientists at the Salk Institute for Biological Studies have identified patterns of epigenomic diversity that not only allow plants to adapt to various environments, but could also benefit crop production and the study of human diseases.

Published March 6 in Nature, the findings show that in addition to genetic diversity found in plants throughout the world, their epigenomic makeup is as varied as the environments in which they are found. Epigenomics is the study of the pattern of chemical markers that serve as a regulatory layer on top of the DNA sequence. Depending on where they grow, the plants' epigenomic differences may allow them to rapidly adapt to their environments.

Epigenomic modifications alter gene expression without changing the letters of the DNA alphabet (A-T-C-G), providing cells with an additional tool to fine-tune how genes control the cellular machinery. These changes occur not only in plants, but in humans as well.

"We looked at plants collected from around the world and found that their epigenomes are surprisingly different," says senior author Joseph R. Ecker, a professor in Salk's Plant Biology Laboratory and holder of the Salk International Council Chair in Genetics. "This additional diversity may create a way for plants to rapidly adapt to diverse environments without any genetic change in their DNA, which takes a very long time."

By understanding epigenomic alterations in plants, scientists may be able to manipulate them for various purposes, including biofuels and creating crops that can withstand stressful events such as drought.

That knowledge of epigenomic changes in crop plants could tell producers what to breed for and could have a huge impact on identifying plants that can survive certain conditions and adapt to environmental stressors, says Ecker, who is also a Howard Hughes Medical Institute and Gordon and Betty Moore Foundation Investigator.

Using MethylC-Seq, a method for mapping epigenomic changes developed by Ecker, the researchers analyzed methylation patterns from a population of Arabidopsis thaliana, a modest mustard weed that has become to plant biology what laboratory mice are to animal biology. The plants were from a variety of climates in the Northern Hemisphere, from Europe to Asia and Sweden to the Cape Verde Islands.

Ecker's team examined the genomes and methylomes of A. thaliana, the makeup of their entire genetic and epigenomic codes, respectively, which is the first step toward understanding the impact of epigenetic changes on the plants' physical characteristics and ability to adapt to their environment.

"We expected variation in methylation patterns among groups of plants from around the globe," says co-lead author Robert J. Schmitz, a postdoctoral researcher in Ecker's lab. "The amount, however, was far greater than we ever anticipated."

By analyzing these patterns, Ecker's team was able to chart their effects on the activity of genes in the plants' genome. Scientists know that methylation can inactivate genes, but in contrast to DNA mutations, methylation patterns are reversible, giving the plants the ability to temporarily activate genes. The identification of genes that are epigenetically regulated has greatly narrowed the potential candidates important for environmental adaptation.

Methylation silencing also occurs in humans-and that has implications for treating cancer, a hallmark of which is the silencing of tumor suppressor genes. "If these genes are turned off by the epigenome, they could potentially be turned back on by removing the DNA methylation," says study co-lead author Matthew Schultz, a graduate student in Ecker's lab. Understanding how these methylation variants form in the wild will help toward better engineering of epigenomes.

Ecker's team will next study how methylation variations affect the traits of plants. They will examine stress-induced epigenomic changes and how they might provide clues as to which alterations are most important for the plants.

Other researchers on the study were Mark A. Urich, Joseph R. Nery, Mattia Pelizzola, Andrew Alix, Richard B. McCosh, and Huaming Chen, from the Salk Institute; and Ondrej Libiger and Nicholas J. Schork of The Scripps Research Institute

.


Related Links
Salk Institute
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





FARM NEWS
Replacing soybean meal in pig diets
Chicago IL (SPX) Mar 04, 2013
Canola, cottonseed, and sunflower products can replace soybean meal in diets fed to pigs, but they contain less protein and energy. To determine if it makes economic sense to use them, producers need to know the concentrations and digestibility of the nutrients they contain. To help them make the decision, University of Illinois researchers examined amino acid digestibility for these products. ... read more


FARM NEWS
Space station to watch for Earth disasters

Twin CU-Boulder instruments reveal a third radiation belt can wrap around Earth

Mysterious electron stash found hidden among Van Allen belts

Satellite SAR capabilities being enhanced

FARM NEWS
China targeting navigation system's global coverage by 2020

Russian GLONASS space satellite group again at full strength

Tracking trains with satellite precision

USAF Awards Lockheed Martin Contracts to Begin Work on Next Set of GPS III Satellites

FARM NEWS
NASA Eyes Declining Vegetation In The Eastern United States From 2000 To 2010

EU cracks down on illegal timber trade

Science synthesis to help guide land management of US forests

Declining Vegetation Across The Eastern US Observed

FARM NEWS
Biobatteries catch breath

Duckweed as a cost-competitive raw material for biofuel production

Brazil sugarcane farms could impact local climate

UC San Diego Biologists Produce Rainbow-Colored Algae

FARM NEWS
Panasonic and Pristine Sun To Build 50MW of California Solar Farms

JinkoSolar Delivers First Distributed Rooftop PV System to Eaton Electric

Bosch Solar Energy Completes 1.9 Megawatt Project in Maui County

Trojan Batteries Power "City of Joy" in the Democratic Republic of the Congo

FARM NEWS
British National Trust opposes wind farms

Wind power as a cost-effective long-term hedge against natural gas prices

RMT Safely Constructs Seven Wind Projects in 2012

Prysmian Gets New Contract For Connection Of Offshore Wind Park

FARM NEWS
FARM NEWS
Award-winning Tibetan writer denied China passport

Anger over attack on Hong Kong journalists in China

Tibetan self-immolators inspire Chinese painter

Chinese activist now in US: State Dept




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement