. Energy News .




.
BIO FUEL
High-Yield Method for Producing Everyday Plastics from Biomass
by Staff Writers
Amherst, MA (SPX) May 02, 2012

A key to the success of this new process is the use of a catalyst that is specifically designed to promote the p-xylene reaction over other less desirable reactions. Dauenhauer says his research colleagues, professors Wei Fan of UMass Amherst and Raul Lobo of the University of Delaware, designed the catalyst.

A team of chemical engineers led by Paul J. Dauenhauer of the University of Massachusetts Amherst has discovered a new, high-yield method of producing the key ingredient used to make plastic bottles from biomass. The process is inexpensive and currently creates the chemical p-xylene with an efficient yield of 75-percent, using most of the biomass feedstock, Dauenhauer says. The research is published in the journal ACS Catalysis.

Dauenhauer, an assistant professor of chemical engineering at UMass Amherst, says the new discovery shows that there is an efficient, renewable way to produce a chemical that has immediate and recognizable use for consumers.

He says the plastics industry currently produces p-xylene from petroleum and that the new renewable process creates exactly the same chemical from biomass.

'You can mix our renewable chemical with the petroleum-based material and the consumer would not be able to tell the difference," Dauenhauer says.

Consumers will already know the plastics made from this new process by the triangular recycling label "#1" on plastic containers. Xylene chemicals are used to produce a plastic called PET (or polyethylene terephthalate), which is currently used in many products including soda bottles, food packaging, synthetic fibers for clothing and even automotive parts.

The new process uses a zeolite catalyst capable of transforming glucose into p-xylene in a three-step reaction within a high-temperature biomass reactor. Dauenhauer says this is a major breakthrough since other methods of producing renewable p-xylene are either expensive (e.g., fermentation) or are inefficient due to low yields.

A key to the success of this new process is the use of a catalyst that is specifically designed to promote the p-xylene reaction over other less desirable reactions. Dauenhauer says his research colleagues, professors Wei Fan of UMass Amherst and Raul Lobo of the University of Delaware, designed the catalyst.

After a series of modifications, the team was able to help enhance the yield of the reaction. He also says additional modification of the process can further boost p-xylene yield and make the process more economically attractive.

"We discovered that the performance of the biomass reaction was strongly affected by the nanostructure of the catalyst, which we were able to optimize and achieve 75-percent yield," Fan says.

Computations conducted by the team have been instrumental in understanding the reaction mechanism and the role of the catalyst as well as making alteration to the catalyst to improve the yield of the process.

Besides Dauenhauer and Fan, the research team is made up of UMass Amherst's C. Luke Williams and Chun-Chih Chang, doctoral students in chemical engineering, and their collaborators, professors Raul F. Lobo, Dionisios G. Vlachos and Stavros Caratzoulas, as well as doctoral student Nima Nikbin, and postdoctoral fellow Phuong Do from the University of Delaware.

This discovery is a part of a larger effort by the Catalysis Center for Energy Innovation (CCEI) to create breakthrough technologies for the production of biofuels and chemicals from lignocellulosic biomass.

The center is funded by the U.S. Department of Energy as part of the Energy Frontiers Research Center (EFRC) program which combines more than 20 faculty members with complimentary research skills to collaborate on solving the world's most pressing energy challenges.

The discovery for the production of plastics adds another dimension to the portfolio of accomplishments of CCEI. In 2010, a CCEI research team led by Mark Davis of Caltech discovered a new catalyst, called Tin-Beta, which can convert glucose into fructose.

This is the first step in the production of a large number of targeted products including biofuels and biochemicals, including p-xylene, from the building block of cellulose, the major constituent of trees and switchgrass.

In addition, a team led by Ray Gorte and John Vohs at the University of Pennsylvania has developed a novel fuel cells technology that converts solid biomass to electricity and another led by George Huber and Wei Fan of UMass Amherst has improved the yield to aromatics that can be used as drop-in fuels to gasoline.

Related Links
University of Massachusetts Amherst
Bio Fuel Technology and Application News




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



BIO FUEL
Tests of aviation jet biofuel to start
Morristown, N.J. (UPI) Apr 30, 2012
U.S. tech firm Honeywell says it is starting one of the aviation industry's first comprehensive test programs for aviation biofuel. Honeywell subsidiary UOP will carry out the program in cooperation with the National Research Council of Canada and Agrisoma Biosciences, earthtechling.com reported Monday. Blends of Honeywell green jet fuel will be tested at higher ratios than used ... read more


BIO FUEL
Lockheed Martin Completes Key Integration Milestone on GeoEye-2

NASA Image Gallery Highlights Earth's Changing Face

Risat-1 satellite raised to its final intended orbit

Risat-1 catapults India into a select group of nations

BIO FUEL
China launches two navigation satellites

Astrium built Galileo satellites fit and fully operational in orbit

First payload ready for next batch of Galileo satellites

NASA Tests GPS Monitoring System for Big US Quakes

BIO FUEL
Bolivian natives begin new march in road protest

Do urban 'heat islands' hint at trees of future?

Palms reveal the significance of climate change for tropical biodiversity

Rousseff pressed to veto Brazil forestry law

BIO FUEL
Tests of aviation jet biofuel to start

High-Yield Method for Producing Everyday Plastics from Biomass

Oil palm surging source of greenhouse gas emissions

Climate change, biofuels mandate would cause corn price spikes

BIO FUEL
Avidan Management Announces Solar Power Project in Edison New Jersey

Solar Array at Oberlin College

Panasonic Solar Panels Installed at New City Nissan in Honolulu

Folding light: Wrinkles and twists boost power from solar panels

BIO FUEL
NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

Scientists find night-warming effect over large wind farms in Texas

DoD, Navy and Wind Farm Developer Release Historic MoA

British engineering firm creates 1,000 wind farm jobs

BIO FUEL
Nine die in China coal mine blast

Buy coal? New analysis shows purchasing fossil fuel deposits best way to fight climate change

At least 15 dead in two China mine floods

Coal India faces government pressure

BIO FUEL
China, US in talks to allow Chen to leave: activist

Chinese activist in US embassy: fellow dissident

Hong Kong delays China patriotism lessons

Disbelief in village over China activist's daring escape


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement