Energy News  
EARTH OBSERVATION
How does Earth sustain its magnetic field?
by Staff Writers
Washington DC (SPX) Jul 13, 2020

stock illustration only

How did the chemical makeup of our planet's core shape its geologic history and habitability?

Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles from the solar wind and more far-flung cosmic rays. It is continuously generated by the motion of liquid iron in Earth's outer core, a phenomenon called the geodynamo.

Despite its fundamental importance, many questions remain unanswered about the geodynamo's origin and the energy sources that have sustained it over the millennia.

New work from an international team of researchers, including current and former Carnegie scientists Alexander Goncharov, Nicholas Holtgrewe, Sergey Lobanov, and Irina Chuvashova examines how the presence of lighter elements in the predominately iron core could affect the geodynamo's genesis and sustainability. Their findings are published by Nature Communications.

Our planet accreted from the disk of dust and gas that surrounded our Sun in its youth. Eventually, the densest material sank inward in the forming planet, creating the layers that exist today - core, mantle, and crust. Although, the core is predominately iron, seismic data indicates that some lighter elements like oxygen, silicon, sulfur, carbon, and hydrogen, were dissolved into it during the differentiation process.

Over time, the inner core crystallized and has been continuously cooling since then. On its own, could heat flowing out of the core and into the mantle drive the geodynamo? Or does this thermal convection need an extra boost from the buoyancy of light elements, not just heat, moving out of a condensing inner core?

Understanding the specifics of the core's chemical composition can help answer this question.

Silicates are predominant in the mantle, and after oxygen and iron, silicon is the third-most-abundant element in the Earth, so it is a likely option for one of the main lighter elements that could be alloyed with iron in the core. Led by Wen-Pin Hsieh of Academia Sinica and National Taiwan University, the researchers used lab-based mimicry of deep Earth conditions to simulate how the presence of silicon would affect the transmission of heat from the planet's iron core out into the mantle.

"The less thermally conductive the core material is, the lower the threshold needed to generate the geodynamo," Goncharov explained. "With a low enough threshold, the heat flux out of the core could be driven entirely by the thermal convection, with no need for the additional movement of material to make it work."

The team found that a concentration of about 8 weight percent silicon in their simulated inner core, the geodynamo could have functioned on heat transmission alone for the planet's entire history.

Looking forward, they want to expand their efforts to understand how the presence of oxygen, sulfur, and carbon in the core would influence this convection process.

Research paper


Related Links
Carnegie Institution For Science
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
Earth's magnetic field can shift 10 times faster than scientists thought
Washington DC (UPI) Jul 07, 2020
New simulations suggest Earth's magnetic field can change directions 10 times faster than previously thought. Today, scientists use satellites to track Earth's magnetic field, but to understand the evolution of the planet's magnetic field, researchers must analyze sediment cores, lava samples and human artifacts. Clues left in minerals that hardened long ago can only offer so much detail. As such, scientists continue to debate the true rates of magnetic field change across time. " ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Proba-V passes the torch

Contracts awarded for development of six new Copernicus missions

Earth's magnetic field can shift 10 times faster than scientists thought

In the right hands, NASA satellite data and analysis make Earth better

EARTH OBSERVATION
GPS 3 satellite on route to orbital slot under own propulsion

Beidou system's applications spread around globe

Microchip releases major update to BlueSky GNSS Firewall

Beidou system sees wide application across the country

EARTH OBSERVATION
French shipping giant to stop Gambian timber exports over smuggling fears

Investors want 'results' on deforestation: Brazil VP

Forest harvesting in Europe threatens climate goals

Gold mining stunts Amazon rainforest recovery

EARTH OBSERVATION
Size matters for bioenergy with carbon capture and storage

Coconut oil may be worse than palm oil for the environment

Algae as living biocatalysts for a green industry

The exhaust gas from a power plant can be recovered and used as a raw reaction material

EARTH OBSERVATION
O3 Energy, UPower, and AVANA Capital to supply Texas rural co-ops solar power

Duke Energy to provide solar access to customers while lowering bills over time

AFRL collaborates in break-through solar power development

New DLR institutes will investigate solar-chemical fuels and the future of air transport

EARTH OBSERVATION
Ingeteam's advanced simulation models to ease wind power grid integration

Magnora ASA and Kustvind AB accelerate development of 500 MW offshore wind project in southern Sweden

Maryland offshore wind farm could become stop-over for migrating sturgeon, striped bass

Simulating wind farm development

EARTH OBSERVATION
Climate activists rage as Germany votes drawn-out coal exit

Siemens shifts away from coal as it wins spin-off backing

Japan to limit financing of overseas coal power plants

Spain closes half its coal-fired power stations

EARTH OBSERVATION
Sweden ex-envoy faces verdict in China dissident case

Hong Kong set to become a new Tibet, says exiled leader

No regrets: wounded Hong Kong police vow to keep enforcing law

Hong Kong leader says will 'vigorously implement' security law









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.