Energy News  
EARLY EARTH
How does plant DNA avoid the ravages of UV radiation?
by Staff Writers
Chapel Hill, NC (SPX) Apr 22, 2018

illustration only

If the ultraviolet radiation from the sun damages human DNA to cause health problems, does UV radiation also damage plant DNA? The answer is yes, but because plants can't come in from the sun or slather on sunblock, they have a super robust DNA repair kit.

Today, the UNC School of Medicine lab of 2015 Nobel laureate Aziz Sancar, MD, PhD, has published an exquisite study of this powerful DNA repair system in plants, which closely resembles a repair system found in humans and other animals.

The study, published in Nature Communications, is the first repair map of an entire multicellular organism. It revealed that the "nucleotide excision repair" system works much more efficiently in the active genes of plants as compared to humans. And this efficiency depends on the day/night cycle.

"These findings advance our understanding of DNA repair mechanisms common among all organisms and may also have practical applications," said co-corresponding author Ogun Adebali, PhD, a postdoctoral researcher in the Sancar lab.

First author Onur Oztas, PhD, a postdoctoral researcher in the Sancar lab, said, "DNA damage accumulating in a plant will impair its growth and development, so boosting the excision repair system could be a good strategy for improving crop yields."

Sancar, the Sarah Graham Kenan Professor of Biochemistry and Biophysics, was awarded the 2015 Nobel Prize in Chemistry for his studies of excision repair, which is now widely viewed as the major mechanism of DNA repair - including repair of UV damage - in living organisms.

Most prior studies of this repair system have been in mammalian and bacterial cells; much less is known about how the system works in plants. However, plants must have efficient systems for DNA repair, since they cannot easily avoid sunlight and of course need it for their growth.

For the study, Oztas and colleagues used an excision-repair mapping technique they recently developed, known as XR-seq. The technique enables them to detect and sequence the short lengths of damaged DNA that are cut from chromosomes during the excision repair process.

The sequences of these DNA snippets can be matched to corresponding stretches of DNA on a reference genome, in order to map precisely the spots where DNA-damage is under repair.

The UNC researchers performed XR-seq scans on cells from UV-exposed plants - Arabidopsis thaliana, the "lab rat" of plant research also known as thale cress or mouse-ear cress. The resulting repair maps revealed that excision repair in Arabidopsis works faster on genes that are active.

Genes when active are transcribed into strands of RNA that may then be translated into proteins, the main machinery of cells. Prior studies from the Sancar lab showed that excision repair works more efficiently for actively transcribed genes in animals and bacteria. The phenomenon, called transcription-coupled repair, is thought to have evolved as a way to direct DNA repair where it is most acutely needed.

"Here we found that the jump in efficiency for transcription-coupled repair is even more pronounced in plants than it is in animals or bacteria," Oztas said.

Sancar's lab performed XR-seq on UV-exposed Arabidopsis over 24-hour periods to discover that the efficiency of transcription-coupled repair also varies according to the "circadian" day/night cycle for 10 to 30 percent of Arabidopsis's genes. This reflects the normal daily variations of transcription activity in these genes.

"The results show that excision repair in plants is regulated in much the same way it is in other organisms - in order to maximize efficiency," Oztas said.

The Sancar lab plans to follow up with studies aimed at solving two lingering mysteries about excision repair in plants. One is that knocking out the excision repair system leads to an increase in plant genome mutations even when the plant is kept in the dark, away from UV or other forms of light.

"This implies that excision repair is needed to fix DNA damage from other, unknown factors besides UV," Oztas said. "We'd like to identify and characterize those unknown factors and find out how excision repair fixes the types of damage they cause."

The plant excision repair system also involves a slightly different set of repair proteins than are found in other organisms. The UNC scientists hope to determine why that is and precisely how plants' distinctive set of excision repair proteins work together to keep plant genomes in good repair.


Related Links
University of North Carolina Health Care
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Marine fish won an evolutionary lottery 66 million years ago
Los Angeles CA (SPX) Apr 19, 2018
Why do our oceans contain such a staggering diversity of fish of so many different sizes, shapes and colors? A UCLA-led team of biologists reports that the answer dates back 66 million years, when a six-mile-wide asteroid crashed to Earth, wiping out the dinosaurs and approximately 75 percent of the world's animal and plant species. Slightly more than half of today's fish are "marine fish," meaning they live in oceans. And most marine fish, including tuna, halibut, grouper, sea horses and mahi-mah ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
First global carbon dioxide maps produced by Chinese observation satellite

China to launch new weather satellite

Do-It-Yourself Science: Because We Are All Explorers

Storm hunter in position

EARLY EARTH
China opens first overseas center for BeiDou navigation satellite system in Tunisia

PSLV-C41 Successfully Launches IRNSS-1I Navigation Satellite

India Resets Navigation Satellite Developed to Replace GPS

DT Research introduces new rugged tablet with scientific-grade GNSS

EARLY EARTH
Warming climate could speed forest regrowth in eastern US

Poland illegally cut down ancient forest, EU court rules

Palm trees are spreading northward - how far will they go?

Soil fungi may help determine the resilience of forests to environmental change

EARLY EARTH
Research shows how genetics can contribute for advances in 2G ethanol production

Algae-forestry, bioenergy mix could help make CO2 vanish from thin air

Removing the brakes on plant oil production

NUS engineers pioneer greener and cheaper technique for biofuel production

EARLY EARTH
As Illinois Turns To Clean Energy, Sunrun Offers Rooftop Solar and Jobs

Lockheed Martin and Rovsing collaborate to bring solar array simulators to market

Energy conversion: Optical 'overtones' for solar cells

New research could literally squeeze more power out of solar cells

EARLY EARTH
Alberta proposes more renewable energy incentives

Transformer station for giant German wind farm positioned

Scotland's largest offshore wind farm close to operational

Construction complete ahead of schedule at Sommette wind farm, France

EARLY EARTH
BHP confirms exit from world coal body over climate stance

Michigan utility company to go zero coal

Australia won't fund mega Adani mine rail link

EARLY EARTH
Spain accuses CaixaBank of laundering Chinese money

#IamGay backlash a rare win for China's LGBT community

China's Weibo backtracks on gay content ban

Former China Politburo member pleads guilty to bribery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.