Energy News  
STELLAR CHEMISTRY
IceCube search for the 'sterile neutrino' draws a blank
by Staff Writers
Madison WI (SPX) Aug 10, 2016


The IceCube Laboratory at the Amundsen-Scott South Pole Station in Antarctica. Image courtesy Erik Beiser, IceCube/NSF. For a larger version of this image please go here.

In an effort to fill in the blanks of the Standard Model of particle physics, science has been conducting a diligent search for a hypothesized particle known as the "sterile neutrino." Now, with the latest results from an icy particle detector at the South Pole, scientists are almost certain that there is no such particle.

If discovered, the sterile neutrino would have added to the neutrino family portrait and helped explain a number of puzzles that suggest the existence of more than the three known flavors of neutrinos. Ultimately, such a particle could also help resolve the mystery of the origin of dark matter and the matter/antimatter asymmetry in the universe.

Neutrinos are ghostly particles with almost no mass and only rarely interact with matter. Trillions of neutrinos will course through your body in the time it takes to read this sentence. There are three known types of neutrinos: muon, electron and tau. Hints of a possible fourth type of neutrino have come from several experiments. Known as the "sterile neutrino," the hypothesized particle would not interact at all with matter except, possibly, through gravity.

Discovering the sterile neutrino would also throw a wrench into the Standard Model, which allows for only the three known types of neutrino.

"If you throw in a fourth neutrino, it changes everything," explains Francis Halzen, a University of Wisconsin-Madison professor of physics and principal investigator for the IceCube Neutrino Observatory, a massive detector embedded deep in the ice beneath the South Pole. "Sterile means it doesn't interact with matter itself, although it can dramatically interfere with the way conventional neutrinos do."

The only way to detect a sterile neutrino is to catch it in the act of transforming into one of the other types. The presence of the sterile neutrino has been hinted at by several experiments, including at the Los Alamos National Laboratory in the 1990s and, more recently, at the Daya Bay nuclear reactor facility near Hong Kong. But definitive evidence of the particle's existence has so far eluded scientists.

Now, in a study published (Aug. 8, 2016) in the journal Physical Review Letters, IceCube researchers may have largely put to rest the notion of this fourth kind of neutrino. In two independent analyses of data from the massive Antarctic detector - each consisting of a year's worth of data or about 100,000 neutrino events - the striking feature associated with the sterile neutrino was nowhere to be found, says Halzen.

The analyses were performed using so-called atmospheric neutrinos, neutrinos created when cosmic rays crash into particles in the upper atmosphere of the Earth. The groups conclude that there is 99 percent certainty the eV-mass sterile neutrino hinted at by previous experiments does not exist.

"Like Elvis, people see hints of the sterile neutrino everywhere," says Halzen. "There was this collection of hints, and theorists were convinced it exists."

The groups conducting the analyses scoured the hundreds of thousands of neutrino events that reached the IceCube detector after coursing through the Earth from the sky in the northern hemisphere. Because only neutrinos can travel through the planet unimpeded, the Earth serves as an effective screen, filtering out all other types of particles.

IceCube consists of 5,160 light-detecting sensors frozen in crystal clear Antarctic ice more than a mile beneath the South Pole. Neutrinos are detected when they occasionally crash into nuclei, creating a muon and, subsequently, a telltale streak of blue Cherenkov light.

The search conducted by the IceCube teams looked at neutrino events occurring in the 320 GeV to 20 TeV energy range. In this range, Halzen notes, sterile neutrinos would produce a very distinctive signature.

The appeal of a fourth kind of neutrino is that it would help bridge a gap in theory that predicts that some neutrinos from a beam of one type of neutrino emanating from a given source - be it a nuclear reactor, the sun or the atmosphere - would change from one kind of neutrino to another as they travel to a distant detector. It would also help solve other cosmological puzzles like the mismatch between matter and antimatter in the universe and the origin of dark matter.

"This new result highlights the versatility of the IceCube Neutrino Observatory," according to Olga Botner, a professor of physics and astronomy at Uppsala University in Sweden and the spokesperson for the IceCube Collaboration. "It is not only an instrument for exploration of the violent universe but allows detailed studies of the properties of the neutrinos themselves."

Failing to detect the elusive particle, however, means physics remains in the dark about the origin of the tiny neutrino mass, or why they have mass in the first place, says Halzen.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
IceCube Search for 'Sterile Neutrino' Draws a Blank
Madison WI (SPX) Aug 08, 2016
In an effort to fill in the blanks of the Standard Model of particle physics, science has been conducting a diligent search for a hypothesized particle known as the "sterile neutrino." Now, with the latest results from an icy particle detector at the South Pole, scientists are almost certain that there is no such particle. If discovered, the sterile neutrino would have added to the neutrin ... read more


STELLAR CHEMISTRY
WorldView-4 Earth Imaging Satellite Arrives at Vandenberg Air Force Base for Sept 15 Launch

Foraging strategies of smallest seals revealed in first ever satellite tracking study

Iran, Roscosmos Discuss Price of Remote-Sensing Satellite Construction, Launch

Study Maps Hidden Water Pollution in U.S. Coastal Areas

STELLAR CHEMISTRY
GPS jamming: Keeping ships on the 'strait' and narrow

China's satnav industry grows 29 pct in 2015

Twinkle, Twinkle, GPS

Like humans, lowly cockroach uses a GPS to get around, scientists find

STELLAR CHEMISTRY
Early snowmelt reduces forests' atmospheric CO2 uptake

Tiny Asian beetle wreaks havoc on N. America trees

The missing link in carbon accounting

Rainforest greener during 'dry' season

STELLAR CHEMISTRY
Bioenergy decisions involve wildlife habitat and land use trade-offs

Patented bioelectrodes have electrifying taste for waste

The Thai village using poop to power homes

Novel 'repair system' discovered in algae may yield new tools for biotechnology

STELLAR CHEMISTRY
Spectrolab produces higher efficiency space solar cell

Russia's First Solar-Powered Satellite Completes Test Flight

Sports stadium harnesses power of the sun

DOE SunShot Initiative support new ASU solar research projects

STELLAR CHEMISTRY
E.ON starts new wind farm in Texas

Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

STELLAR CHEMISTRY
Moody's: Poland to remain dependent on coal

11 dead after fire at illegal Chinese coal mine

Sweden backs Vattenfall exit from German coal unit

Federal coal report is propaganda, House Republican says

STELLAR CHEMISTRY
China activist tried for subversion, 4th case in 4 days

Tradition faces modernity at Tibetan horse festival

Banned election candidates lead Hong Kong independence rally

China activist jailed for more than seven years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.