Energy News  
TIME AND SPACE
In star clusters, black holes merge with neutron stars, unseen
by Staff Writers
Heidelberg, Germany (SPX) May 18, 2020

Invisible black hole-neutron star mergers, i.e. fusions without the emission of electromagnetic radiation, take place in dense stellar environments like in the globular cluster NGC 3201 seen here.

Mergers between black holes and neutron stars in dense star clusters are quite unlike those that form in isolated regions where stars are few. Their associated features could be crucial to the study of gravitational waves and their source.

Dr Manuel Arca Sedda of the Institute for Astronomical Computing at Heidelberg University came to this conclusion in a study that used computer simulations. The research may offer critical insights into the fusion of two massive stellar objects that astronomers observed in 2019. The findings were published in the journal "Communications Physics".

Stars much more massive than our sun usually end their lives as a neutron star or black hole. Neutron stars emit regular pulses of radiation that allow their detection. In August 2017, for example, when the first double neutron star merger was observed, scientists all around the globe detected light from the explosion with their telescopes. Black holes, on the other hand, usually remain hidden because their gravitational attraction is so strong that even light cannot escape, making them invisible to electromagnetic detectors.

If two black holes merge, the event may be invisible but is nonetheless detectable from ripples in space-time in the form of so-called gravitational waves. Certain detectors, like the "Laser Interferometer Gravitational Waves Observatory" (LIGO) in the USA, are able to detect these waves.

The first successful direct observation was made in 2015. The signal was generated by the fusion of two black holes. But this event may not be the only source of gravitational waves, which could also come from the merger of two neutron stars or a black hole with a neutron star. Discovering the differences is one of the major challenges in observing these events, according to Dr Arca Sedda.

In his study, the Heidelberg researcher analysed the fusion of pairs of black holes and neutron stars. He used detailed computer simulations to study the interactions between a system made up of a star and a compact object, such as a black hole, and a third massive roaming object that is required for a fusion.

The results indicate that such three-body interactions can in fact contribute to black hole-neutron star mergers in dense stellar regions like globular star clusters. "A special family of dynamic mergers that is distinctly different from mergers in isolated areas can be defined", explains Manuel Arca Sedda.

The fusion of a black hole with a neutron star was first observed by gravitational wave observatories in August 2019. Yet optical observatories around the world were unable to locate an electromagnetic counterpart in the region from which the gravitational wave signal originated, suggesting that the black hole had completely devoured the neutron star without first destroying it. If confirmed, this could be the first observed black hole-neutron star merger detected in a dense stellar environment, as described by Dr Arca Sedda.

Research paper


Related Links
University Of Heidelberg
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
ESO instrument finds closest black hole to Earth
Munich, Germany (SPX) May 07, 2020
A team of astronomers from the European Southern Observatory (ESO) and other institutes has discovered a black hole lying just 1000 light-years from Earth. The black hole is closer to our Solar System than any other found to date and forms part of a triple system that can be seen with the naked eye. The team found evidence for the invisible object by tracking its two companion stars using the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. They say this system could just be the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New, rapid mechanism for atmospheric particle formation

Tiny NASA satellite captures first image of clouds and aerosols

NASA CubeSat Mission to Gather Vital Space Weather Data

Cold War nuke tests changed rainfall

TIME AND SPACE
New BeiDou satellite starts operation in network

Velodyne Lidar announces multi-year sales agreement with GeoSLAM

Galileo positioning aiding Covid-19 reaction

GPS celebrates 25th year of operation

TIME AND SPACE
With attention on virus, Amazon deforestation surges

Brazil to deploy army to fight Amazon deforestation

Look beyond rainforests to protect trees, scientists say

Deforestation in Africa accelerates: UN food agency

TIME AND SPACE
Researchers turn algae leftovers into renewable products with flare

Can renewable energy really replace fossil fuels?

Solve invasive seaweed problem by turning it into biofuels and fertilisers

Fossil fuel-free jet propulsion with air plasmas

TIME AND SPACE
DSM and Lightyear join forces to scale up integrated solar roofs for electric vehicles

JA Solar new generation high-efficiency solar modules reach record 525W

Moisture-sucking gels give solar panels the chills

On the road to non-toxic and stable perovskite solar cells

TIME AND SPACE
US wind plants show relatively low levels of performance decline as they age

Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

TIME AND SPACE
Post-COVID-19 stimulus risks global coal 'lock-in'

Miners stuck in limbo as Beijing's last coal mine closes

Coal investors face $600 bn loss to renewables: analysis

How one woman is taking on Vietnam's 'big coal'

TIME AND SPACE
Hong Kong risks new unrest with China anthem bill: opposition

Green or red light: China virus app is ticket to everywhere

Macau bans Tiananmen exhibition for first time in 30 years: activists

Ex-shipbuilding boss in China faces corruption probe









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.