. Energy News .




MICROSAT BLITZ
Inflatable antennae could give CubeSats greater reach
by Jennifer Chu for MIT News
Boston MA (SPX) Sep 10, 2013


View of a CubeSat equipped with an inflated antenna, in a NASA radiation chamber. Photo: Alessandra Babuscia.

The future of satellite technology is getting small - about the size of a shoebox, to be exact. These so-called "CubeSats," and other small satellites, are making space exploration cheaper and more accessible: The minuscule probes can be launched into orbit at a fraction of the weight and cost of traditional satellites.

But with such small packages come big limitations - namely, a satellite's communication range. Large, far-ranging radio dishes are impossible to store in a CubeSat's tight quarters. Instead, the satellites are equipped with smaller, less powerful antennae, restricting them to orbits below those of most geosynchronous satellites.

Now researchers at MIT have come up with a design that may significantly increase the communication range of small satellites, enabling them to travel much farther in the solar system: The team has built and tested an inflatable antenna that can fold into a compact space and inflate when in orbit.

The antenna significantly amplifies a radio signal, allowing a CubeSat to transmit data back to Earth at a higher rate. The distance that can be covered by a satellite outfitted with an inflatable antenna is seven times farther than that of existing CubeSat communications.

"With this antenna you could transmit from the moon, and even farther than that," says Alessandra Babuscia, who led the research as a postdoc at MIT. "This antenna is one of the cheapest and most economical solutions to the problem of communications."

The team, led by Babuscia, is part of Professor Sara Seager's research group and also includes graduate students Benjamin Corbin, Mary Knapp, and Mark Van de Loo from MIT, and Rebecca Jensen-Clem from the California Institute of Technology. The researchers, from MIT's departments of Aeronautics and Astronautics and of Earth, Atmospheric and Planetary Sciences, have detailed their results in the journal Acta Astronautica.

'Magic' powder
An inflatable antenna is not a new idea. In fact, previous experiments in space have successfully tested such designs, though mostly for large satellites: To inflate these bulkier antennae, engineers install a system of pressure valves to fill them with air once in space - heavy, cumbersome equipment that would not fit within a CubeSat's limited real estate.

Babuscia raises another concern: As small satellites are often launched as secondary payloads aboard rockets containing other scientific missions, a satellite loaded with pressure valves may backfire, with explosive consequences, jeopardizing everything on board. This is all the more reason, she says, to find a new inflation mechanism.

The team landed on a lighter, safer solution, based on sublimating powder, a chemical compound that transforms from a solid powder to a gas when exposed to low pressure.

"It's almost like magic," Babuscia explains. "Once you are in space, the difference in pressure triggers a chemical reaction that makes the powder sublimate from the solid state to the gas state, and that inflates the antenna."

Testing an inflating idea
Babuscia and her colleagues built two prototype antennae, each a meter wide, out of Mylar; one resembled a cone and the other a cylinder when inflated. They determined an optimal folding configuration for each design, and packed each antenna into a 10-cubic-centimeter space within a CubeSat, along with a few grams of benzoic acid, a type of sublimating powder.

The team tested each antenna's inflation in a vacuum chamber at MIT, lowering the pressure to just above that experienced in space. In response, the powder converted to a gas, inflating both antennae to the desired shape.

The group also tested each antenna's electromagnetic properties - an indication of how well an antenna can transmit data. In radiation simulations of both the conical and cylindrical designs, the researchers observed that the cylindrical antenna performed slightly better, transmitting data 10 times faster, and seven times farther, than existing CubeSat antennae.

An antenna made of thin Mylar, while potentially powerful, can be vulnerable to passing detritus in space. Micrometeroids, for example, can puncture a balloon, causing leaks and affecting an antenna's performance. But Babuscia says the use of sublimating powder can circumvent the problems caused by micrometeroid impacts. She explains that a sublimating powder will only create as much gas as needed to fully inflate an antenna, leaving residual powder to sublimate later, to compensate for any later leaks or punctures.

The group tested this theory in a coarse simulation, modeling the inflatable antenna's behavior with different frequency of impacts to assess how much of an antenna's surface may be punctured and how much air may leak out without compromising its performance. The researchers found that with the right sublimating powder, the lifetime of a CubeSat's inflatable antenna may be a few years, even if it is riddled with small holes.

Babuscia says future tests may involve creating tiny holes in a prototype and inflating it in a vacuum chamber to see how much powder would be required to keep the antenna inflated. She is now continuing to refine the antenna design at JPL.

"In the end, what's going to make the success of CubeSat communications will be a lot of different ideas, and the ability of engineers to find the right solution for each mission," Babuscia says. "So inflatable antennae could be for a spacecraft going by itself to an asteroid. For another problem, you'd need another solution. But all this research builds a set of options to allow these spacecraft, made directly by universities, to fly in deep space."

.


Related Links
MIT
Microsat News and Nanosat News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





MICROSAT BLITZ
SSBV Aerospace and Technology Group expands space activities into Poland
Salt Lake City UT (SPX) Aug 14, 2013
SSBV Aerospace and Technology Group has announced at the IAAA / Utah State University Small Satellite Conference and Exhibition the creation of a new SSBV daughter company based in Poland. As of next month, the company will start its operations from the Science and Technology Park in Suwalki, located in the North-Eastern part of Poland. The company will operate under the name of SSBV ... read more


MICROSAT BLITZ
Our living planet Earth's carbon dioxide breathing seen from space

NASA's Landsat Revisits Old Flames in Fire Trends

NASA Data Reveals Mega-Canyon under Greenland Ice Sheet

Map carved onto surface of ostrich egg may be oldest showing New World

MICROSAT BLITZ
Galileo's secure service tested by Member States

European Union countries in test of home-grown GPS system

Satellite tracking of zebra migrations in Africa is conservation aid

'Spoofing' attack test takes over ship's GPS navigation at sea

MICROSAT BLITZ
New technique for measuring tree growth cuts down on research time

Northeastern US forests transformed by human activity over 400 years

Red cedar tree study shows that Clean Air Act is reducing pollution, improving forests

Argentina protests Uruguay pulp mill expansion

MICROSAT BLITZ
Canadian scientists unravel camelina biofuel genome

New possibilities for efficient biofuel production

Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

MICROSAT BLITZ
New Connection between Stacked Solar Cells Can Handle Energy of 70,000 Suns

Cheaper Chinese solar panels are not due to low-cost labor

Solis Partners Urges N.J. Commercial Property Owners to Apply Now for PSE and G's Solar Loan III Program

Global Solar Inverter Shipments Fall for the First Time in Seven Quarters

MICROSAT BLITZ
Windswept German island gives power to the people

No evidence of residential property value impacts near US wind turbines

French court rejects planned wind farm near Mont Saint Michel

China to Remain Wind Power Market Leader in 2020

MICROSAT BLITZ
German coal mine turns village into ghost town

India's 'Coalgate' deepens

Australia's coal sector enduring toughest operating environment

Greenpeace warns water pollution from German coal mining on the rise

MICROSAT BLITZ
Eye-gouging attack casts spotlight on Chinese backwater

China's Guangzhou to empty labour camps: media

China frees dissident convicted on Yahoo! evidence: group

China's anti-graft body orders mooncakes off the menu




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement