. Energy News .




TECH SPACE
JILA physicists achieve elusive 'evaporative cooling' of molecules
by Staff Writers
Washington DC (SPX) Dec 21, 2012


JILA researchers developed a new magnetic trap and a new technique to achieve "evaporative cooling" of hydroxyl molecules (one hydrogen atom bonded to one oxygen atom). A microwave pulse at a specific frequency converts hot molecules inside the trap to a slightly different energy state. A small electric field is pulsed on briefly to destabilize and eject these converted molecules from the trap. As the microwave frequency is slowly altered, molecules distributed inside the trap (which has a varied magnetic field strength) are progressively converted and removed from the top of the trap, where molecules are hotter, to the bottom, where molecules are cooler. Credit: Baxley and Ye Group/JILA.

Achieving a goal considered nearly impossible, JILA physicists have chilled a gas of molecules to very low temperatures by adapting the familiar process by which a hot cup of coffee cools. Evaporative cooling has long been used to cool atoms, at JILA and elsewhere, to extraordinarily low temperatures. The process was used at JILA in 1995 to create a then-new state of matter, the Bose-Einstein condensate (BEC) of rubidium atoms.

The latest demonstration, reported in Nature, marks the first time evaporative cooling has been achieved with molecules-two different atoms bonded together.

JILA researchers cooled about 1 million hydroxyl radicals, each composed of one oxygen atom and one hydrogen atom (OH), from about 50 milliKelvin (mK) to 5 mK, five-thousandths of a degree above absolute zero. The 70-millisecond process also made the cloud 1,000 times denser and cooler.

With just a tad more cooling to below 1 mK, the new method may enable advances in ultracold chemistry, quantum simulators to mimic poorly understood physical systems, and perhaps even a BEC made of highly reactive molecules.

The same JILA group previously used magnetic fields and lasers to chill molecules made of potassium and rubidium atoms to temperatures below 1 microKelvin.** But the new work demonstrates a more widely usable method for cooling molecules that is potentially applicable to a wide range of chemically interesting species.

"OH is a hugely important species for atmospheric and combustion dynamics," says JILA/NIST Fellow Jun Ye, the group leader. "It is one of the most prominently studied molecules in physical chemistry.

"Now with OH molecules entering the ultracold regime, in addition to potassium-rubidium molecules, a new era in physical chemistry will be upon us in the near future."

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado (CU) Boulder. The results are the first to be published from the first experiments conducted in JILA's new X-Wing, which opened earlier this year. JILA theorist John Bohn collaborated with Ye's group.

In evaporative cooling, particles with greater-than-average energy depart, leaving a cooler and denser system behind. Unlike coffee, however, the trapped hydroxyl molecules have to be tightly controlled and manipulated for the process to work.

If too many particles react rather than just bounce off each other, they overheat the system. Until now, this was widely seen as a barrier to evaporative cooling of molecules. Molecules are more complicated than atoms in their energy structures and physical motions, making them far more difficult to control.

To achieve their landmark result, Ye's group developed a new type of trap that uses structured magnetic fields to contain the hydroxyl molecules, coupled with finely tuned electromagnetic pulses that tweak the molecules' energy states to make them either more or less susceptible to the trap.

The system allows scientists not only to control the release of the hotter, more energetic molecules from the collection, but also to choose which locations within the trap are affected, and which molecular energies to cull.

he result is an extremely fine level of control over the cooling system, gradually ejecting molecules that are physically deeper and relatively cooler than before.

JILA scientists say it appears feasible to cool OH molecules to even colder temperatures, perhaps to a point where all the molecules behave alike, forming the equivalent of a giant "super molecule."

This would enable scientists to finally learn some of the elusive basics of how molecules interact and develop novel ways to control chemical reactions, potentially benefitting atmospheric and combustion science, among other fields.

The research was funded by the National Science Foundation, Department of Energy, Air Force Office of Scientific Research and NIST. B.K. Stuhl, M.T. Hummon, M. Yeo, G. Quemener, J.L. Bohn and J. Ye. Evaporative cooling of the dipolar hydroxyl radical. Nature. Dec. 20, 2012.

.


Related Links
National Institute of Standards and Technology (NIST)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





TECH SPACE
Paper waste used to make bricks
Jaen, Spain (SPX) Dec 21, 2012
Researchers at the University of Jaen (Spain) have mixed waste from the paper industry with ceramic material used in the construction industry. The result is a brick that has low thermal conductivity meaning it acts as a good insulator. However, its mechanical resistance still requires improvement. "The use of paper industry waste could bring about economic and environmental benefits as it ... read more


TECH SPACE
China launches Turkish EO satellite

Google Maps driving Apple iOS upgrades

Google Maps returns to iPhone after Apple fiasco

Shadows on ice: Proba-1 images Concordia south polar base

TECH SPACE
KAIST announced a major breakthrough in indoor positioning research

Third Boeing GPS IIF Begins Operation After Early Handover to USAF

Putin Urges CIS Countries to Join Glonass

Third Galileo satellite begins transmitting navigation signal

TECH SPACE
Scientists Use Satellite Data to Map Invasive Species in Great Lakes Wetlands

Cloud forest trees drink water through their leaves

More bang for bugs

If you cut down a tree in the forest, can wildlife hear it?

TECH SPACE
NC State Study Offers Insight Into Converting Wood to Bio-Oil

Can Algae-Derived Oils Support Large-Scale, Low-Cost Biofuels Production?

Plastic packaging industry is moving towards completely bio-based products

Gases from Grasses

TECH SPACE
Top-10 Solar Market Predictions for 2013

KYOCERA Surpasses Two Million Solar Modules Produced in North America

Solar panel companies in federal probe

Asian Supermarket Distribution Center Completes Solar Installation

TECH SPACE
China's wind towers face U.S. tariffs

Offshore wind power: AREVA and STX France ally their expertise

US confirms duties on 1towers from China, Vietnam

Wind speeds in southern New England declining inland, remaining steady on coast

TECH SPACE
China mine blast kills 17: state media

China mine blast toll rises to 23

China mine blast kills 18: state media

US shale gas drives up coal exports

TECH SPACE
China 'V for Vendetta' broadcast amazes viewers

China property market revives despite controls

Stately pleasure dome rises in China's Chengdu

Testing time for China's migrant millions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement