Energy News  
CHIP TECH
Light goes infinitely fast with new on-chip material
by Staff Writers
Boston MA (SPX) Oct 20, 2015


In this zero-index material - made of silicon pillar arrays embedded in a polymer matrix and clad in gold film - there is no phase advance. Instead zero-index material creates a constant phase, stretching out in infinitely long wavelengths. Image courtesy Peter Allen, Harvard SEAS. For a larger version of this image please go here.

Electrons are so 20th century. In the 21st century, photonic devices, which use light to transport large amounts of information quickly, will enhance or even replace the electronic devices that are ubiquitous in our lives today. But there's a step needed before optical connections can be integrated into telecommunications systems and computers: researchers need to make it easier to manipulate light at the nanoscale.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have done just that, designing the first on-chip metamaterial with a refractive index of zero, meaning that the phase of light can travel infinitely fast.

This new metamaterial was developed in the lab of Eric Mazur, the Balkanski Professor of Physics and Applied Physics and Area Dean for Applied Physics at SEAS, and is described in the journal Nature Photonics.

"Light doesn't typically like to be squeezed or manipulated but this metamaterial permits you to manipulate light from one chip to another, to squeeze, bend, twist and reduce diameter of a beam from the macroscale to the nanoscale," said Mazur. "It's a remarkable new way to manipulate light."

Although this infinitely high velocity sounds like it breaks the rule of relativity, it doesn't. Nothing in the universe travels faster than light carrying information - Einstein is still right about that. But light has another speed, measured by how fast the crests of a wavelength move, known as phase velocity. This speed of light increases or decreases depending on the material it's moving through.

When light passes through water, for example, its phase velocity is reduced as its wavelengths get squished together. Once it exits the water, its phase velocity increases again as its wavelength elongates. How much the crests of a light wave slow down in a material is expressed as a ratio called the refraction index - the higher the index, the more the material interferes with the propagation of the wave crests of light. Water, for example, has a refraction index of about 1.3.

When the refraction index is reduced to zero, really weird and interesting things start to happen.

In a zero-index material, there is no phase advance, meaning light no longer behaves as a moving wave, traveling through space in a series of crests and troughs. Instead, the zero-index material creates a constant phase - all crests or all troughs - stretching out in infinitely long wavelengths. The crests and troughs oscillate only as a variable of time, not space.

This uniform phase allows the light to be stretched or squished, twisted or turned, without losing energy. A zero-index material that fits on a chip could have exciting applications, especially in the world of quantum computing.

"Integrated photonic circuits are hampered by weak and inefficient optical energy confinement in standard silicon waveguides," said Yang Li, a postdoctoral fellow in the Mazur Group and first author on the paper. "This zero-index metamaterial offers a solution for the confinement of electromagnetic energy in different waveguide configurations because its high internal phase velocity produces full transmission, regardless of how the material is configured."

The metamaterial consists of silicon pillar arrays embedded in a polymer matrix and clad in gold film. It can couple to silicon waveguides to interface with standard integrated photonic components and chips.

"In quantum optics, the lack of phase advance would allow quantum emitters in a zero-index cavity or waveguide to emit photons which are always in phase with one another," said Philip Munoz, a graduate student in the Mazur lab and co-author on the paper. "It could also improve entanglement between quantum bits, as incoming waves of light are effectively spread out and infinitely long, enabling even distant particles to be entangled."

"This on-chip metamaterial opens the door to exploring the physics of zero index and its applications in integrated optics," said Mazur.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Chemical microdroplet computers are easier to teach than to design
Warsaw, Poland (SPX) Oct 15, 2015
Scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw in cooperation with the Institute of Physics of the PAS and the University of Jena have developed the concept of a simple chemical computer made of microdroplets capable of searching databases. Computer simulations, carried out on databases of malignant tumours, have confirmed the validity of the adop ... read more


CHIP TECH
Sentinel-3A shows off

China reports less pollution from burning straw

NASA Eyes on Earth Aid Response to Carolina Flooding

New study indicates Earth's inner core was formed 1-1.5 billion years ago

CHIP TECH
Russian-Chinese Sat NavSystem to Launch on Silk Road, EEU Markets

ISRO looking to extend GPS services to SAARC countries

Last of the dozen GPS IIF satellites arrive at CCAFS for processing

Glonass system can fully switch to domestic electronics in 2 years

CHIP TECH
Future coastal climate not cool for redwood forests

New study rings alarm for sugar maple in Adirondacks

Protected and intact forests lost at an alarming rate around the world

Could contaminated land actually be good for trees

CHIP TECH
New UT study highlights environmental, economic shortcomings of federal biofuel laws

Light emitting diodes made from food and beverage waste

Study: Africa's urban waste could produce rural electricity

Researchers create inside-out plants to watch how cellulose forms

CHIP TECH
Strathcona secures $250 US Million Financing with 1784 Solar, LLC

Solvents save steps in solar cell manufacturing

American Solar Direct Joins 100s in rally for solar jobs

Lockheed Martin Parking Catches Sun Power

CHIP TECH
E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

CHIP TECH
Australia approves India-backed Adani mine despite fears for reef

Greenpeace mulls bid for Swedish lignite group

CHIP TECH
Exiled Tibetans vote for new political leader

Hong Kong police, 'beaten' protester, all face charges

Tibetan writer released by China after 10 years in jail: group

China pledges veteran pension funding after protests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.