. Energy News .




.
TIME AND SPACE
Light squeezed on a quantum scale
by Staff Writers
Brisbane, Australia (SPX) Sep 24, 2012

illustration only

An international team of physicists has pushed the boundaries on ultra-precise measurement by harnessing quantum light waves in a new way.

It is one thing to be able to measure spectacularly small distances using "squeezed" light, but it is now possible to do this even while the target is moving around.

An Australian-Japanese research collaboration made the breakthrough in an experiment conducted at the University of Tokyo, the results of which have been published in an article, "Quantum-enhanced optical phase tracking" in the prestigious journal, Science.

Leader of the international theoretical team Professor Howard Wiseman, from Griffith University's Centre for Quantum Dynamics, said this more precise technique for motion tracking will have many applications in a world which is constantly seeking smaller, better and faster technology.

"At the heart of all scientific endeavour is the necessity to be able to measure things precisely," Professor Wiseman said.

"Because the phase of a light beam changes whenever it passes through or bounces off an object, being able to measure that change is a very powerful tool."

"By using squeezed light we have broken the standard limits for precision phase tracking, making a fundamental contribution to science," he said. "But we have also shown that too much squeezing can actually hurt."

Dr Dominic Berry from Macquarie University has been collaborating with Professor Wiseman on the theory of this problem for many years.

"The key to this experiment has been to combine "phase squeezing" of light waves with feedback control to track a moving phase better than previously possible," Dr Berry said.

"Ultra-precise quantum-enhanced measurement has been done before, but only with very small phase changes. Now we have shown we can track large phase changes as well," he said.

Professor Elanor Huntington from UNSW Canberra, who directed the Australian experimental contribution, is a colleague of Professor Wiseman in the Centre for Quantum Computation and Communication Technology.

"By using quantum states of light we made a more precise measurement than is possible through the conventional techniques using laser beams of the same intensity," Professor Huntington said.

Curiously, we found that it is possible to have too much of a good thing. Squeezing beyond a certain point actually degrades the performance of the measurement making it less precise than if we had used light with no squeezing."

Participating research organisations: The University of Tokyo, Griffith University, Centre for Quantum Computation and Communication Technology (Australian Research Council), University of New South Wales (Canberra), Kyoto University, University of Waterloo (Ontario), Macquarie University, University of Queensland.

Related Links
Griffith University
Understanding Time and Space




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TIME AND SPACE
Experiment in University of Florida laboratory corrects prediction in quantum theory
Gainesville, FL (SPX) Sep 21, 2012
An international team of scientists is rewriting a page from the quantum physics rulebook using a University of Florida laboratory once dubbed the coldest spot in the universe. Much of what we know about quantum mechanics is theoretical and tested via computer modeling because quantum systems, like electrons whizzing around the nucleus of an atom, are difficult to pin down for observation. ... read more


TIME AND SPACE
Apple fans complain of missing landmarks in new map system

Pioneering UK project to improve land carbon intelligence accuracy and reliability

More satellite launches planned for upgrading maritime monitoring

Astrium installs new terminal in Mexico to receive SPOT 6 and SPOT 7 imagery

TIME AND SPACE
Improved positioning indoors

ITT Exelis announces new capability in GPS interference, detection and geolocation

Countdown: a month to go to Galileo's next launch

Monitech Announces Zero-Installation Tracking System for Automotive Industry

TIME AND SPACE
Research study trees chopped down

Old Deeds, Witness Trees Offer Glimpse of Pre-settlement Forest in West Virginia

Trouble in paradise: Does nature worship harm the environment?

Forest mortality and climate change: The big picture

TIME AND SPACE
New Uses for Old Tools Could Boost Biodiesel Output

Most biofuels are not green

World's first biofuel jet flight to take off in Canada

Sorghum Eyed as a Southern Bioenergy Crop

TIME AND SPACE
Two-thirds of the world's new solar panels were installed in Europe in 2011

SolarBridge Technologies Introduces New Monitoring System

AREVA integrates energy storage in its Solar CLFR design

Panasonic Marks First Shipment of Branded Solar Panels to North America

TIME AND SPACE
Wind power faces tax credit uncertainty

Sufficient wind energy available to meet global demands without damaging climate

Report backs greater role for wind energy

Wind could meet many times world's total power demand by 2030

TIME AND SPACE
Australian coal projects mega polluters?

Australian coal basin may be top 10 polluter: Greenpeace

Coal mining jobs slashed in Australia

China mine accident kills 10

TIME AND SPACE
Chinese man wrongly sent to labour camp: panel

H.K. students protest over 'brainwashing' classes

China villager bombs local government office

China's Wen says property controls still needed: Xinhua


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement