Energy News  
BIO FUEL
Lighting the path to recycling carbon dioxide
by Staff Writers
Thuwal, Saudi Arabia (SPX) Oct 07, 2020

SEM image shows the dense and uniform cathodic biofilm, which mainly comprises chemolithoautotrophs, and could serve as biocatalysts for efficient carbon dioxide conversion to acetate.

Semiconductive photocatalysts that efficiently absorb solar energy could help reduce the energy required to drive a bioelectrochemical process that converts CO2 emissions into valuable chemicals, KAUST researchers have shown.

Recycling CO2 could simultaneously reduce carbon emissions into the atmosphere while generating useful chemicals and fuels, explains Bin Bian, a Ph.D. student in Pascal Saikaly's lab, who led the research. "Microbial electrosynthesis (MES), coupled with a renewable energy supply, could be one such technology," Bian says.

MES exploits the capacity of some microbes to take up CO2 and convert it into chemicals, such as acetate. In nature, chemolithoautotroph microbes metabolize minerals as a source of energy in a process that involves the shuttling of electrons.

This capability can be exploited to turn CO2 into value-added products if the microbes are supplied with a stream of electrons and protons from anodic water splitting in an electrochemical cell (see image).

In their latest work, rather than focus on the CO2-to-acetate step, the team worked on reducing the energy input for molecular oxygen (O2) production at the anode, a reaction that keeps the overall cell in balance. "In MES systems, the process that consumes the most energy is believed to be the oxygen evolution reaction (OER)," Bian explains.

Researchers have used light-capturing anode materials, such as titanium dioxide, that harness energy from sunlight to help drive the OER. In their current work, the team investigated a promising alternative for the photoanode, the light-harvesting material, bismuth vanadate.

Bismuth vanadate absorbed energy from a much broader range of the solar spectrum than titanium dioxide, making the whole MES cell more efficient, the team showed. "We obtained solar-to-acetate conversion efficiency of 1.65 percent, which is the highest reported so far," Saikaly says.

"This efficiency is around eight times higher than the 0.2 percent efficiency of global natural photosynthesis, which is nature's solar-powered process for converting CO2 into energy-rich molecules," Bian notes.

So far the team has kept the microbe biocatalysts supplied with a steady stream of electrons and CO2 to sustain their growth. "The next step for us is to test our system under real sunlight and monitor the resilience of the biocatalysts under an intermittent renewable energy source," Saikaly says.

Research paper


Related Links
King Abdullah University Of Science and Technology (KAUST)
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Inducing plasma in biomass could make biogas easier to produce
Washington DC (SPX) Sep 23, 2020
Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with a long list of challenges. Cellulose and woody lignocellulose in biomass are especially hard for bacteria to digest, making the process inefficient. Chemical, physical, or mechanical processes, or several of them combined, can be used for pretreatment to make biomass easier to digest, but many of the current solutions are expensive or inefficient ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
New research on how planetary forces shape the Earth's surface

First group of Gaofen pictures are clearest ever

First AI image from space with HyperScout

MethaneSAT completes critical design review, moves into production phase

BIO FUEL
Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

Tech combo is a real game-changer for farming

Launch of Russia's Glonass-K satellite postponed until October

BIO FUEL
Brazil court blocks move to repeal mangrove protections

Brazil's Bolsonaro hits back at Biden over rainforest

Pine needles evolved to help trees cope with rainfall

Brazil rejects deforestation concerns; Victim of 'brutal disinformation' says Bolsonaro

BIO FUEL
Inducing plasma in biomass could make biogas easier to produce

Novel photocatalysts can perform solar-driven conversion of CO2 into fuel

Cascades with carbon dioxide

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future

BIO FUEL
Chemical innovation stabilizes best-performing perovskite formulation

Untapped potential exists for blending hydropower, floating PV

Opterus awarded NASA contract to develop large retractable blanket solar array

Mirror-like photovoltaics get more electricity out of heat

BIO FUEL
California offshore winds show promise as power source

Offshore wind power now so cheap it could pay money back to consumers

Trust me if you can

BIO FUEL
'Two-headed beast': China's coal addiction erodes climate goals

German villagers take coal fight to highest court

Britain rejects new coal mine on environmental grounds

Fight over future of UK coal as last big mine shuts

BIO FUEL
Millions on the move as China eyes holiday bounce

China anniversary arrests as Hong Kong leader hails 'return to peace'

Families fear for Hong Kong fugitives in China custody

Families fear for Hong Kong fugitives in China custody









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.