Energy News  
MARSDAILY
Mars' oceans formed early, possibly aided by massive volcanic eruptions
by Staff Writers
Berkeley CA (SPX) Mar 20, 2018

The early ocean known as Arabia (left, blue) would have looked like this when it formed 4 billion years ago on Mars, while the Deuteronilus ocean, about 3.6 billion years old, had a smaller shoreline. Both coexisted with the massive volcanic province Tharsis, located on the unseen side of the planet, which may have helped support the existence of liquid water. The water is now gone, perhaps frozen underground and partially lost to space, while the ancient seabed is known as the northern plains.

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million years earlier and were not as deep as once thought.

The proposal by geophysicists at the University of California, Berkeley, links the existence of oceans early in Mars history to the rise of the solar system's largest volcanic system, Tharsis, and highlights the key role played by global warming in allowing liquid water to exist on Mars.

"Volcanoes may be important in creating the conditions for Mars to be wet," said Michael Manga, a UC Berkeley professor of earth and planetary science and senior author of a paper appearing in Nature this week and posted online March 19.

Those claiming that Mars never had oceans of liquid water often point to the fact that estimates of the size of the oceans don't jibe with estimates of how much water could be hidden today as permafrost underground and how much could have escaped into space. These are the main options, given that the polar ice caps don't contain enough water to fill an ocean.

The new model proposes that the oceans formed before or at the same time as Mars' largest volcanic feature, Tharsis, instead of after Tharsis formed 3.7 billion years ago. Because Tharsis was smaller at that time, it did not distort the planet as much as it did later, in particular the plains that cover most of the northern hemisphere and are the presumed ancient seabed. The absence of crustal deformation from Tharsis means the seas would have been shallower, holding about half the water of earlier estimates.

"The assumption was that Tharsis formed quickly and early, rather than gradually, and that the oceans came later," Manga said. "We're saying that the oceans predate and accompany the lava outpourings that made Tharsis."

It's likely, he added, that Tharsis spewed gases into the atmosphere that created a global warming or greenhouse effect that allowed liquid water to exist on the planet, and also that volcanic eruptions created channels that allowed underground water to reach the surface and fill the northern plains.

Following the shorelines
The model also counters another argument against oceans: that the proposed shorelines are very irregular, varying in height by as much as a kilometer, when they should be level, like shorelines on Earth.

This irregularity could be explained if the first ocean, called Arabia, started forming about 4 billion years ago and existed, if intermittently, during as much as the first 20 percent of Tharsis's growth. The growing volcano would have depressed the land and deformed the shoreline over time, which could explain the irregular heights of the Arabia shoreline.

Similarly, the irregular shoreline of a subsequent ocean, called Deuteronilus, could be explained if it formed during the last 17 percent of Tharsis's growth, about 3.6 billion years ago.

"These shorelines could have been emplaced by a large body of liquid water that existed before and during the emplacement of Tharsis, instead of afterwards," said first author Robert Citron, a UC Berkeley graduate student. Citron will present a paper about the new analysis on March 20 at the annual Lunar and Planetary Science conference in Texas.

Tharsis, now a 5,000-kilometer-wide eruptive complex, contains some of the biggest volcanoes in the solar system and dominates the topography of Mars. Earth, twice the diameter and 10 times more massive than Mars, has no equivalent dominating feature. Tharsis's bulk creates a bulge on the opposite side of the planet and a depression halfway between. This explains why estimates of the volume of water the northern plains could hold based on today's topography are twice what the new study estimates based on the topography 4 billion years ago.

New hypothesis supplants old
Manga, who models the internal heat flow of Mars, such as the rising plumes of molten rock that erupt into volcanoes at the surface, tried to explain the irregular shorelines of the plains of Mars 11 years ago with another theory. He and former graduate student Taylor Perron suggested that Tharsis, which was then thought to have originated at far northern latitudes, was so massive that it caused the spin axis of Mars to move several thousand miles south, throwing off the shorelines.

Since then, however, others have shown that Tharsis originated only about 20 degrees above the equator, nixing that theory. But Manga and Citron came up with another idea, that the shorelines could have been etched as Tharsis was growing, not afterward. The new theory also can account for the cutting of valley networks by flowing water at around the same time.

"This is a hypothesis," Manga emphasized. "But scientists can do more precise dating of Tharsis and the shorelines to see if it holds up."

NASA's next Mars lander, the InSight mission (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport), could help answer the question. Scheduled for launch in May, it will place a seismometer on the surface to probe the interior and perhaps find frozen remnants of that ancient ocean, or even liquid water.

Research paper


Related Links
University of California - Berkeley
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Studies of Clay Formation Provide Clues to Early Martian Climate
Mountain View, CA (SPX) Feb 06, 2018
New research published in Nature Astronomy seeks to understand how surface clay was formed on Mars despite its cold climate. The climate on early Mars has presented an enigma for planetary scientists because surface features such as valley networks indicate abundant liquid water was present and the clay minerals found in most ancient surface rocks need even warmer temperatures to form, while atmospheric models generally support a cold climate on early Mars. This new study led by Janice Bishop of t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
China launches land exploration satellite

Scientist eyes Chinese satellites to help world tackle air pollution

Full house for EDRS

Scientists accurately model the action of aerosols on clouds

MARSDAILY
Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

MARSDAILY
Growing need for urban forests as urban land expands

Cash payments prompt tropical forest users to harvest less

Development threatens Latin America's great Pantanal wetlands

Locked in a forest

MARSDAILY
Manure could heat your home

Startup scales up CNT membranes to make carbon-zero fuels for less than fossil fuels

Malaysia to press EU on planned palm oil ban in biofuels

Digestive ability of ancient insects could boost biofuel development

MARSDAILY
Seminole Financial Services Surpasses Three-Quarters of a Gigawatt in Renewable Energy Financing

India inaugurates mega solar project

Macron pledges 700 million euros for new solar projects

Researchers sew atomic lattices seamlessly together

MARSDAILY
BP sees onshore wind as the cheapest future source of electricity

German green energy segment Innogy divvied up

Wind industry continues commitment to communities with new research report

First UK wind farm transfers from commercial to community ownership

MARSDAILY
Michigan utility company to go zero coal

Australia won't fund mega Adani mine rail link

New York unveils plans for fossil fuel divestment

French energy company EDF to replace coal in China

MARSDAILY
China widens Xi's corruption crackdown

Xi gets second term with powerful ally as VP

China dragoons viewers to make pro-Xi film a blockbuster

Hong Kong mulls three years' jail for anthem disrespect









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.