Energy News  
CHIP TECH
Model for multivalley polaritons
by Staff Writers
Seoul, South Korea (SPX) May 12, 2017


Minimal energy locations, called valleys, are shown with white crosses. Image courtesy IBS.

Everything we experience is made of light and matter. And the interaction between the two can bring about fascinating effects. For example, it can result in the formation of special quasiparticles, called polaritons, which are a combination of light and matter.

A team at the Center for Theoretical Physics of Complex Systems, within the Institute for Basic Science (IBS), modeled the behavior of polaritons in microcavities, nanostructures made of a semiconductor material sandwiched between special mirrors (Bragg mirrors). Published in Scientific Reports, this research brings new ideas to the emerging valleytronics field.

Emerging from the coupling of light (photons) and matter (bound state of electrons and holes known as excitons), polaritons have characteristics of each. They are formed when a light beam of a certain frequency bounces back and forth inside microcavities, causing the rapid interconversion between light and matter and resulting in polaritons with a short lifetime.

"You can imagine these quasiparticles as waves that you make in water, they move together harmoniously, but they do not last very long. The short lifetime of polaritons in this system is due to the properties of the photons," explains Mr Meng Sun, first author of the study.

Researchers are studying polaritons in microcavities to understand how their characteristics could be exploited to outperform the present semiconductor technologies. Modern optoelectronics read, process, and store information by controlling the flow of particles, but looking for new more efficient alternatives, other parameters, like the so-called 'valleys' could be considered.

Valleys can be visualized by plotting the energy of the polaritons to their momentum. Valleytronics aims to control the properties of the valleys in some materials, like transition metal dichalcogenides (TMDCs), indium gallium aluminum arsenide (InGaAlAs), and graphene.

Being able to manipulate their features would lead to tunable valleys with two clearly different states, corresponding for example to 1 bit and 0 bit, like on-off states in computing and digital communications.

A way to distinguish valleys with the same energy level is to obtain valleys with different polarization, so that electrons (or polaritons) would preferentially occupy one valley over the others. IBS scientists have generated a theoretical model for valley polarization that could be useful for valleytronics.

Although polaritons are formed by the coupling of photons and excitons, the research team modeled the two components independently. "Modeling potential profiles of photons and excitons separately is the key to find where they overlap, and then determine the minimal energy positions where valleys occur," points out Sun.

A crucial feature of this system is that polaritons can inherit some properties, like polarization. Valleys with different polarization form spontaneously when the splitting of the transverse (i.e. perpendicular) electronic and magnetic modes of the light beam is taken into consideration (TE-TM splitting).

Since this theoretical model predicts that valleys with opposite polarization can be distinguished and tuned, in principle, different valleys could be selectively excited by a polarized laser light, leading to a possible application in valleytronics.

Research paper

CHIP TECH
Wonder material? Novel nanotube structure strengthens thin films for flexible electronics
Chicago IL (SPX) Apr 24, 2017
Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics. "The structural robustness of thin metal fil ... read more

Related Links
Institute for Basic Science
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA team pursues blobs and bubbles with new PetitSat mission

exactEarth Announces Two-Year $1.45 Million Commercial Customer Renewal

AIRS: 15 Years of Seeing What's in the Air

Orbital Insight invests $50M in satellite and drone imagery analysis business

CHIP TECH
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

CHIP TECH
Microscopic soil creatures could orchestrate massive tree migrations

New look at satellite data questions scale of China's afforestation success

Poland EU row over ancient forest heats up

DR Congo arrests 14 Chinese for wood smuggling

CHIP TECH
Genome sequence of fuel-producing alga announced

New breakthrough makes it easier to turn old coffee waste into cleaner biofuels

Enhancing the efficiency of cereal straw for biofuel production

Biomass powering U.S. military base

CHIP TECH
Solar power not a favorite for New Zealand

Atomic-scale study could pave the way for better, longer-lasting solar cells

Next-gen solar cells could be improved by atomic-scale redesign

Installing solar to combat national security risks in the power grid

CHIP TECH
Scientists track porpoises to assess impact of offshore wind farms

Dutch open 'world's largest offshore' wind farm

OX2 will manage a 45 MW wind farm owned by IKEA Group in Lithuania

Building Energy celebrates the beginning of operations and electricity generation of its first wind farm

CHIP TECH
Gas leak kills 18 miners in central China

India's coal plant plans conflict with climate commitments

Coal power dropping as natural gas, renewables grow, U.S. report finds

US environmental groups file suit to block new coal mining on public lands

CHIP TECH
China frees human rights lawyer on bail: Amnesty

China lawyer's wife seeks US asylum after brazen escape

China wants its anthem sung, but maybe not at parties

Chinese human rights lawyers seen as enemies of the state









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.